
EOSPAC User’s Manual: Version 6.5

LA-UR-21-21243

Artifact ID: EOSPAC6-02-01

David A. Pimentel, XCP-5, Los Alamos National Laboratory

October 15, 2021

Revision 2

-

This program was prepared by Triad National Security, LLC at Los Alamos National

Laboratory (LANL) under contract No. 89233218CNA000001 with the U.S. Depart-

ment of Energy (DOE). All rights in the program are reserved by the DOE and Triad

National Security, LLC. Permission is granted to the public to copy and use this soft-

ware without charge, provided that this Notice and any statement of authorship are

reproduced on all copies. Neither the U.S. Government nor Triad makes any warranty,

express or implied, or assumes any liability or responsibility for the use of this software.

CONTENTS

Contents

1 INTRODUCTION 1

2 CONVENTIONS 3

1 DATA ORGANIZATION . 3

2 ROUTINE NAMES . 4

3 CONSTANT IDENTIFIER NAMES . 4

4 DATA TYPES . 5

3 BASIC THEORY AND MODELS 7

1 Nomenclature . 7

2 Entropy . 8

3 Ion EOS Models . 9

3.1 Ideal Gas Model . 9

3.2 Cowan Model . 11

3.3 Number Proportional Model . 14

4 Additional Thermodynamic Quantities . 16

4.1 Identities . 16

4.2 Sound speed . 17

4.3 Isentropic Compressibility . 18

4.4 Isothermal Compressibility . 18

4.5 Gruneisen Coefficient . 19

4.6 Specific heats . 19

4.7 Thermal expansion alpha . 21

4 GENERAL INTERFACE DESCRIPTION 23

1 USE CASES . 24

1.1 Serial Case . 24

1.2 Parallel Case . 25

5 SETUP MATERIAL DATA 27

1 DATA LOCATIONS . 27

1.1 Environment-variable-defined and default search paths 28

1.2 Ordered File Names List Creation . 28

1.3 Index file . 28

1.4 Default file name list . 31

1.5 Ordered File Names List Example . 32

2 DATA ORGANIZATION . 34

CONTENTS

3 ROUTINES AND PARAMETERS . 36

3.1 eos CreateTables . 36

3.2 eos DestroyAll . 37

3.3 eos DestroyTables . 38

3.4 eos GetMaxDataFileNameLength . 39

3.5 eos GetPackedTables . 39

3.6 eos GetPackedTablesSize . 40

3.7 eos GpuOffloadData . 41

3.8 eos LoadTables . 43

3.9 eos SetDataFileName . 44

3.10 eos SetPackedTables . 44

4 C/C++ LANGUAGE BINDINGS . 46

5 FORTRAN LANGUAGE BINDINGS . 47

6 INTERPOLATE MATERIAL DATA 49

1 DATA ORGANIZATION . 49

2 ROUTINES AND PARAMETERS . 49

2.1 eos CheckExtrap . 50

2.2 eos Interpolate . 52

2.3 eos Mix . 54

3 C/C++ LANGUAGE BINDINGS . 56

4 FORTRAN LANGUAGE BINDINGS . 57

7 MISCELLANEOUS INFORMATION ROUTINES 59

1 ROUTINES AND PARAMETERS . 59

1.1 eos ErrorCodesEqual . 59

1.2 eos GetErrorCode . 60

1.3 eos GetErrorMessage . 60

1.4 eos GetTableCmnts . 61

1.5 eos GetTableInfo . 62

1.6 eos GetMetaData . 63

1.7 eos GetTableMetaData . 63

1.8 eos GetVersion . 64

1.9 eos GetVersionLength . 64

1.10 eos ResetOption . 65

1.11 eos SetOption . 66

2 C/C++ LANGUAGE BINDINGS . 66

3 FORTRAN LANGUAGE BINDINGS . 68

8 TOOLS 71

9 SELECTED NUMERIC DETAILS 73

1 CUSTOM SMOOTHING AND INTERPOLATION 73

2 FORCED DATA MONOTONICITY . 74

CONTENTS

3 EXTENDED PRECISION IS DISABLED . 75

4 MASS FRACTION DATA INTERPOLATION . 76

5 NUMERICAL INTEGRATION . 77

6 LINEAR AND BILINEAR INTERPOLATION . 78

7 INVERT AT SETUP . 80

7.1 Data Transformations . 80

7.2 Usage of EOS INSERT DATA . 85

10 USAGE EXAMPLES 87

1 C HOST CODE EXAMPLE . 87

2 C++ HOST CODE EXAMPLE . 93

3 FORTRAN 77 HOST CODE EXAMPLE . 100

4 FORTRAN 90 HOST CODE EXAMPLE . 107

11 TECHNICAL SUPPORT INFORMATION 115

12 ACKNOWLEDGEMENTS 117

13 BIBLIOGRAPHY 119

14 APPENDIX 121

A TABLE TYPES: MNEMONIC CONVENTIONS 123

B TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 127

B.1 Category 1: Unrelated to SESAME data . 128

B.2 Category 2: General information found in SESAME’s 100- and 200-series tables129

B.3 Category 3: Total EOS in SESAME’s 301 tables 130

B.4 Category 4: Ion+Cold EOS in SESAME’s 303 tables 133

B.5 Category 5: Electron EOS in SESAME’s 304 tables 137

B.6 Category 6: Ion EOS in SESAME’s 305 tables 140

B.7 Category 7: Cold curve EOS in SESAME’s 306 tables 144

B.8 Category 8: Mass fraction EOS in SESAME’s 321 tables 145

B.9 Category 9: Vaporization data in SESAME’s 401 tables 146

B.10 Category 10: Melt data in SESAME’s 411 and 412 tables 151

B.11 Category 11: Shear Modulus data in SESAME’s 431 tables 154

B.12 Category 12: Opacity data in SESAME’s 500-series tables 155

B.13 Category 13: Conductivity data in SESAME’s 600-series tables 156

C TABLE TYPES: EOSPAC VERSION 5 CROSS REFERENCE 157

D OPTIONS: SETUP PHASE . 163

E DATA INFORMATION PARAMETERS . 169

F META-DATA INFORMATION PARAMETERS . 175

G OPTIONS: INTERPOLATION PHASE . 179

H ERROR CODES . 183

CONTENTS

1 INTRODUCTION

“Begin at the beginning,” the King said, gravely, “and go on till you come to an end;

then stop.”

– Lewis Carroll, Alice in Wonderland

The EOSPAC utility package is a collection of interface routines, which can be used to access the

SESAME data library and perform various data adjustments and interpolations on the SESAME

data. The SESAME data library[?] contains both thermodynamic (e.g., equation of state) and

transport coefficients (e.g., opacity and conductivity). Note, for simplicity, the term EOS (equa-

tion of state) used herein includes both thermodynamic variables and transport coefficients. The

EOSPAC utility package is designed to be used by physics codes (henceforth ”host codes”) written

in multiple languages and on multiple platforms. The remainder of this manual is organized into

several sections. Chapter 2 discusses conventions such as data organization and routine names.

Chapter 3 provides a general overview of basic theory and models implemented within EOSPAC.

Chapter 4 provides a general overview of how to use the EOSPAC interface library. Chapters 5 to 7

describe the public interfaces of EOSPAC in detail. Chapter 8 provides a brief introduction to some

related tools, which may be of use to the user. Chapter 9 provides details related to some selected

numerical features of EOSPAC. Chapter 10 gives examples for using the interface routines described

in chapters 5 to 7. Chapter 11 provides technical support contact information. Chapter 12 contains

a brief set of acknowledgments. Chapter 13 contains a list of referenced documents. Finally, chap-

ter 14 lists the “table types: mnemonic conventions”, “table types: grouped by category, sorted by

name”, “table types: eospac version 5 cross reference”, “options: setup phase”, “data information

parameters”, “meta-data information parameters”, “options: interpolation phase”, and the “error

codes”.

1

2 CHAPTER 1. INTRODUCTION

2 CONVENTIONS

I’m a sworn enemy of convention. I despise the conventional in anything, even the arts.

– Hedy Lamarr

In spite of the opening quotation, several conventions are used throughout this document, and they

are described in this chapter. These conventions are categorized as “data organization”, “routine

names”, “constant identifier names”, and “data types”.

1 DATA ORGANIZATION

Conceptually EOSPAC is organized around data tables. A data table is specified by the material

identification number, by the table type (e.g. pressure as a function of density and temperature),

and the processing options (e.g. smoothed, monotonic, etc.). Two data tables differ if any option

differs; thus, a smoothed data table is different than a monotonic data table. This is just common

sense because the values returned for the two data tables will be different. The i-th data table will

be referred to as Ti.

A table handle is used to access the data table. The table handle is a language independent mecha-

nism for a host code to access a specific instance of the data tables being managed by EOSPAC. Note

that table handles are not implemented using native language pointers. The details of establishing

a table handle is discussed in chapter 5 and usage is shown in chapters 6 and 7.

Multiple table handles are returned from the setup routine within a user-supplied array. The host

code then uses the table handles to specify on which data tables EOSPAC is to operate. Typical

operations are interpolating to get data at points desired by the host code, and to destroy the data

tables.

3

4 CHAPTER 2. CONVENTIONS

2 ROUTINE NAMES

Routine name standardization is applied according to the following rules:

1. EOSPAC is a package of routines that provides a cohesive set of logically related functionality

to host codes. The package name “eos ” (or the internal variant “ eos ”) is used as a prefix

for all routine names in the package. This practically guarantees unique routine names when

linked to the host codes. The prefix of a routine name allows users to instantly identify the

physical package from which it came, and the prefix gives users a hint about functionality.

2. A routine name takes the form of ActionSubset where Action specifies a given operation

and the optional Subset specifies a property, information, etc. The complete name will be

eos ActionSubset (or the internal variant eos ActionSubset).

3. The names of certain actions on tables have been standardized. The standardized action

names are as follows:

• “Create” will instantiate data object(s) to store a table or collection of tables

• “Destroy” will destroy a table or collection of tables

• “Get” retrieves information about a table

• “Interpolate” performs interpolation using the table’s member data

• “Load” will create a new table and fill the table’s members with appropriate information

• “Reset” reasserts any default information to a table (i.e., option setting)

• “Set” assigns information to a table (i.e., option setting)

To summarize, routine names are generally defined by eos ActionSubset.

3 CONSTANT IDENTIFIER NAMES

Names of constant identifiers available to host codes are standardized by applying the following

rules:

1. All identifiers begin with the following four characters: “EOS ”.

4. DATA TYPES 5

2. Either the underscore is used to separate words or camel case1 is used if the name is comprised

of multiple words.

4 DATA TYPES

Throughout this document language data types will be referred to generically. The actual definition

is machine-, language-, and compiler-specific. The data types used by EOSPAC are:

• EOS INTEGER a 32-bit signed integer data type

• EOS REAL a 64-bit signed floating point data type

• EOS CHAR an 8-bit character type.

Some parameters of data type EOS INTEGER that are related to the data types are:

• EOS TRUE a constant specifying a Boolean true

• EOS FALSE a constant specifying a Boolean false

• EOS MaxErrMsgLen a constant specifying the maximum character string length as-

sociated with an EOSPAC error message

1Camel case is the practice of writing compound words or phrases such that each word or abbreviation in the middle

of the phrase begins with a capital letter, with no intervening spaces or punctuation. Common examples include

”iPhone”, ”eBay”, ”FedEx”, ”DreamWorks”, and ”HarperCollins”. It is also sometimes used in online usernames

such as ”JohnSmith”, and to make multi-word domain names more legible, for example in advertisements.

6 CHAPTER 2. CONVENTIONS

3 BASIC THEORY AND MODELS

In theory there is no difference between theory and practice. In practice there is.

– Yogi Berra

SESAME typically contains EOS and Vaporization data, Melt Shear Modulus data, Opacity data

and Conductivity data[?]. Where EOS data is missing from SESAME, EOSPAC will often attempt

to calculate it. In some cases, the host code can determine the models used to calculate EOS data.

1 Nomenclature

αexp Thermal expansion alpha

a Intrinsic Helmholtz free energy

CeV K Electron-volt to Kelvin conversion factor (11604.5221 K/eV)

c Adiabatic (isentropic) sound speed

cp Constant-pressure specific heat

cT Isothermal sound speed

cv Constant-volume specific heat

η Electron degeneracy parameter

F Fermi integral

Γ Gruneisen coefficient

h Intrinsic enthalpy

h̄ Reduced Planck constant

Ks Isentropic compressibility

KT Isothermal compressibility

k Boltzman constant

7

8 CHAPTER 3. BASIC THEORY AND MODELS

κ Ratio of specific heats

M Average atomic mass

m Mass

p Total pressure

pi Ion pressure

pc Cold curve pressure (at T = 0)

Ni Ion number density

ρ Density

s Intrinsic Entropy

R Universal Gas Constant (8.3144598e-03 kJ/K/mol)

T Temperature

Ti Ion temperature (eV)

TD Debye temperature (eV)

TM Lindemann melting temperature (eV)

u Intrinsic Total internal energy

ui Intrinsic Ion internal energy

v Intrinsic volume (v = 1
ρ
)

Z Free electrons per ion

It is important to note that the intrinsic variables used in this section are lowercase, but are typically

uppercase throughout the remainder of this document (specifically in the appendices). The upper

case variants are a nomenclature artifact used to improve the readability of the mnemonics in which

they are used. If questions arise regarding the units of a given quantity, then one should assume

they are consistent with the documented SESAME data units[?].

2 Entropy

Entropy is an example of data, not stored within SESAME, which is simple to calculate using

equation (3.1) if both the internal energy and Helmholtz free energy data are available.

a = u− Ts (3.1)

If only the internal energy data is available, as is the case with older EOS data, then equations (3.2)

and (3.3) are used to calculate entropy and equation equation (3.1) is subsequently used to calculate

3. ION EOS MODELS 9

the Helmholtz free energy data.

s =
∫ T

0

1

T

du

dT
dT =

u

T
+
∫ T

0

u

T 2
dT (3.2)

s
∣∣∣
T=0

= u
∣∣∣
T=0

=
u

T

∣∣∣∣
T=0

= 0 (3.3)

This integral form avoids the numerical sensitivities of other differential forms, which are discussed

further in chapter 9 section 5.

3 Ion EOS Models

Other models are available to calculate EOS data corresponding to SESAME subtables[?]. These

analytical models include the Ideal Gas Model, the Cowan Model and the Number Proportional

Model. These models are used to create two-temperature1 EOS data by subtracting the analytically-

calculated data from SESAME’s tabulated total EOS data. Due to cautionary guidance[?], experi-

mentation with different ion EOS models is recommended if problems occur with two-temperature

calculations.

3.1 Ideal Gas Model

The ideal gas law is a simple set of relationships describing the properties of a perfect monatomic

gas.

pi(ρ, T) =
RTρ

M
(3.4)

ui(ρ, T) =
3RT

2M
(3.5)

ai(ρ, T) = −RT
M

(
−7.7072343 +

3

2
ln(MT) + ln

(
M

ρ

))
(3.6)

1Two-temperature EOS data allows a host code to perform calculations with temperature fields associated with

ions and electrons separately.

10 CHAPTER 3. BASIC THEORY AND MODELS

Equation (3.6) was taken directly from the OpenSesame software[?], which is used to generate

SESAME EOS data. Equation (3.1) supplements equations (3.4) and (3.6) to calculate the entropy

data. Curiosity drives the author to determine the origin of equation (3.6). The entropy differential

(TdS equation) is defined as equation (3.7).

ds =
du

T
+
p

T
dv (3.7)

Equation (3.7) may be rewritten as equation (3.8).

ds =
du

dT

dT

T
+
R

M

dv

v
(3.8)

Given du
dT

= 3R
2M

from equation (3.5), equation (3.8) yields equation (3.9).

∫
ds =

∫ 3R

2M

dT

T
+
∫ R

M

dv

v
(3.9)

Integrating by substitution (f = MT, df = dT and g = Mv, dg = dv) equation (3.9) results in

equation (3.10).

s =
3R

2M
ln(MT) +

R

M
ln(Mv) + s0 (3.10)

The Helmholtz free energy is determined by combining equations equations (3.1) and (3.10) to yield

equation (3.11), where v = 1
ρ
.

a =
3RT

2M
− RT

M

(
s0 +

3

2
ln(MT) + ln

(
M

ρ

))
(3.11)

Equation (2.11) can be rewritten as equation (2.12).

a = −RT
M

((
s0 −

3

2

)
+

3

2
ln(MT) + ln

(
M

ρ

))
(3.12)

The general form of equations (3.6) and (3.12) are identical. The value of
(
s0 − 3

2

)
is the result of

applying the ideal gas limit for a monatomic gas, and it is beyond the scope of this document.

3. ION EOS MODELS 11

3.2 Cowan Model

This section describes the simple analytical model developed by R. D. Cowan and documented for

the IONEOS Fast, Analytic, Ion Equation-of-State Routine[?]. A normalized local mass density

and a dimensionless constant are defined by equations (3.13) and (3.14) respectively.

ξ =
9Z0.3ρ

M
(3.13)

β = 0.6Z
1
9 (3.14)

It is convenient to define the specific heat relationship:

cv =
∂u

∂T

∣∣∣∣
v

= T
∂s

∂T

∣∣∣∣
v

(3.15)

The Debye temperature and the Lindemann melting temperature are defined by equations (3.16)

and (3.17) respectively.

TD =
(1.68)ξ2+β

(Z + 22)(1 + ξ)2
(3.16)

TM =
(0.32)ξ4+2β− 2

3

(1 + ξ)4
(3.17)

The ion temperature variables (φF and φS) and Gruneisen parameters (γF and γS) are described

in equations (3.18) to (3.23) for the fluid (F) and solid (S) phases.

φF =
(
TM
Ti

) 1
3

(3.18)

φS =
TD
Ti

(3.19)

γF = 3β − 1 +
6

(1 + ξ)
(3.20)

12 CHAPTER 3. BASIC THEORY AND MODELS

γS = β +
2

(1 + ξ)
(3.21)

γ
′

F = γF +
2γ2F

9
+

6ξ

(1 + ξ)2
(3.22)

γ
′

S = β +
2

(1 + ξ)2
(3.23)

Use equations equations (3.24) to (3.26) for the fluid region (Ti > TM).

pi =
RTρ

M
(1 + γFφF) (3.24)

ui =
3RT

2M
(1 + φF) (3.25)

si =
R

M

7− 3φF +
3

2
ln

 0.02Ti(
0.42
22+Z

)
− ln(ξ)

 (3.26)

Equation (3.26) was taken directly from the OpenSesame software[?], and it can be shown to satisfy

the specific heat relation of equation (3.15). Equation (3.1) supplements equations (3.24) to (3.26)

to calculate the Helmholtz free energy data.

Use equations (3.27) to (3.29) for the high-temperature solid region (Ti ≤ TM and 3Ti > TD).

pi = ργSui (3.27)

ui =
3RT

M

(
1 +

φ2
S

20
− φ4

S

1680

)
(3.28)

si =
R

M

[
4 + 3

(
φ2
S

(
1

40
− φ2

S

2240

)
− ln(φS)

)]
(3.29)

3. ION EOS MODELS 13

Equation (3.29) was taken directly from the OpenSesame software[?], and it can be shown to satisfy

the specific heat relation of equation (3.15). Equation (3.1) supplements equations (3.27) to (3.29)

to calculate the Helmholtz free energy data.

Use equations (3.30) to (3.32) for the low-temperature solid region (Ti ≤ TM and 3Ti ≤ TD).

pi = ρφSui (3.30)

ui =
3RT

M

(
3

8
φS +

π4

5φ3
S

−
(

3 +
9

φS
+

18

φ2
S

+
18

φ3
S

)
e−φS

)
(3.31)

si =
R

M

[
4

(
π4

5φ3
S

−
(

9

4
+

9

φS
+

18

φ2
S

+
18

φ3
S

)
e−φS

)]
(3.32)

Equation (3.32) was analytically derived using equations equations (3.2) and (3.3). Equation (3.1)

supplements equations (3.30) to (3.32) to calculate the Helmholtz free energy data.

It is important to note that the Cowan Model may introduce unwanted pathologies due the fact that

its functions are discontinuous at φS = 3. Figure 3.1 demonstrates the aforementioned discontinuity

between equation (3.29) and equation (3.32), and it is quantified to be approximately a three percent

deviation.

14 CHAPTER 3. BASIC THEORY AND MODELS

fnew =
e−φ(4eφπ4−45(8+8φ+4φ2+φ3))

5φ3
, φ ≥ 3

fnew = 4 + 3
(
φ2
(

1
40
− φ2

2240

)
− ln(φ)

)
, φ < 3

Figure 3.1: Dimensionless parameters from the high-temperature solid en-

tropy expression and the new low-temperature solid entropy expression.

3.3 Number Proportional Model

Since a subtraction of the analytical model values from the tabulated total EOS data is performed

to calculate an electron EOS, pathologies will typically exist within the resultant data at low

temperatures and high densities due to the fact that the chosen ion EOS was not used to calculate

the original EOS data. The number proportional model, in principle, albeit not always, mitigates

such pathological data in that it uses simple ratio equations to model the ion EOS[?].

pi(ρ, T) =
p(ρ, T)

1 + Z
(3.33)

3. ION EOS MODELS 15

ui(ρ, T) =
u(ρ, T)

1 + Z
(3.34)

ai(ρ, T) =
u(ρ, T)

1 + Z
(3.35)

Equations (3.1) and (3.3) are used to calculate the entropy and, subsequently, the Helmholtz free

energy in the event that no Helmholtz free energy data is tabulated; otherwise, equation (3.1)

supplements equations (3.33) to (3.35) to calculate the entropy data.

The number of free electrons per ion is estimated by assuming the thermal electron EOS is deter-

mined using the Fermi-gas model.

Z = Z1F1/2(η) (3.36)

Z1 =
2

Ni

(
mkT

2πh̄2

) 3
2

(3.37)

Z0Z

1 + Z
= Z1F3/2(η) (3.38)

Z0 =
p(ρ, T)− pc(ρ)

NikT
(3.39)

The Fermi integrals satisfy equation (3.40) to at least one-percent accuracy.

F3/2 = F1/2

(
1 + (0.88388)F1/2 + (0.37208)F 2

1/2 + (0.02645)F
10/3
1/2

) 1
5 (3.40)

Upon substituting equations (3.36) and (3.38) into equation (3.40), equation (3.41) is produced.

Z + 1 = Z0

(
1 + (0.88388)

(
Z

Z1

)
+ (0.37208)

(
Z

Z1

)2

+ (0.02645)
(
Z

Z1

)10/3
)− 1

5

(3.41)

Equation (3.41) can be solved iteratively, and it is constrained by equations (3.42) and (3.43).

16 CHAPTER 3. BASIC THEORY AND MODELS

Z ≥ 0 (3.42)

Z0 ≥ 1 (3.43)

4 Additional Thermodynamic Quantities

Often users of EOSPAC are interested in calculating quantities, which are not directly provided

by the EOSPAC interface. Distributed with EOSPAC is a utility named get_sesame_data (see

chapter 8), which provides a command line interface to various EOSPAC capabilities like querying

the content of SESAME data file(s). Additionally, get_sesame_data can calculate various derived

thermodynamic values, which are described in this section.

Given density (ρ) and temperature (T), calculate the following: pressure (p), specific internal energy

(u), specific Helmholtz free energy (a), specific entropy (s), sound speed (c), adiabatic bulk modulus

(β), Gruneisen Coefficient (Γ), isothermal bulk modulus (βT = ρc2T), and specific heats (cv and cp).

The pressure, specific internal energy, specific Helmholtz free energy, and specific entropy are simply

calculated by interpolating the respective SESAME data at the given density and temperature. The

other quantities require more effort as described in the following sections.

4.1 Identities

∂y

∂z

∣∣∣∣
x

∂z

∂x

∣∣∣∣
y

∂x

∂y

∣∣∣∣
z

= −1 (3.44)

∂y

∂x

∣∣∣∣
z

∂x

∂y

∣∣∣∣
z

= 1 (3.45)

∂f

∂v
= −ρ2∂f

∂ρ
where v ≡ 1

ρ
and ∂v ≡ −∂ρ

ρ2
(3.46)

4. ADDITIONAL THERMODYNAMIC QUANTITIES 17

4.2 Sound speed

The adiabatic (isentropic) sound speed is defined by equation (3.47).

c2 = −v2∂p
∂v

∣∣∣∣
s

=
∂p

∂ρ

∣∣∣∣
s

(3.47)

Using equation (3.44), equation (3.47) can be rewritten as equation (3.48).

c2 =

− ∂s
∂ρ

∣∣∣∣
p

∂s
∂p

∣∣∣∣
ρ

(3.48)

Equation (3.48) is a simple means to validate the adiabatic sound speed calculation.

Other variations, which accommodate the interpolation features of EOSPAC, may be derived, and

they are listed in equations (3.49) to (3.51).

c2 =
∂P

∂ρ

∣∣∣∣
T

+
T

ρ2 ∂U
∂T

∣∣∣∣
ρ

(
∂P

∂T

∣∣∣∣
ρ

)2

(3.49)

c2 =
∂P

∂ρ

∣∣∣∣
U

+
P

ρ2
∂P

∂U

∣∣∣∣
ρ

(3.50)

c2 =
∂P

∂ρ

∣∣∣∣
T

+
∂P

∂T

∣∣∣∣
ρ

(
∂T

∂ρ

∣∣∣∣
U

+
P

ρ2
∂T

∂U

∣∣∣∣
ρ

)
(3.51)

It is useful for the reader to note that equation (3.49) may be calculated using the interpolated

values associated with the following non-inverted data table types, which are described in AP-

PENDIX B: EOS Pt DT and EOS Ut DT. The advantage of using non-inverted data table types

is that the numerical errors are minimized – especially for the partial derivative values. Therefore,

equation (3.49) is the recommended method to calculate the adiabatic sound speed using SESAME

data.

Similarly, equation (3.50) can be evaluated using the interpolated values associated with the EOS Pt DUt

inverted data table type. Equation (3.51) can be evaluated using the interpolated values associated

18 CHAPTER 3. BASIC THEORY AND MODELS

with the inverted data table type, EOS T DUt, and the non-inverted data table type, EOS Pt DT.

Finally, equations (3.47) and (3.48) can be evaluated using the interpolated partial derivatives

associated with the inverted data table types, EOS Pt DSt and EOS St DPt, respectively. An as-

sessment [?] has been performed to compare the numerical sensitivities of these various adiabatic

sound speed calculation methods, equations (3.47) to (3.51), and it has been determined that equa-

tion (3.49) produces interpolated results using SESAME data with the minimal numerical noise.

This is concluded to be the result of no required tabular inversions/transforms.

4.3 Isentropic Compressibility

The adiabatic bulk modulus is defined by equation (3.52).

β = ρc2 (3.52)

The isentropic compressibility is subsequently defined by equation (3.53).

Ks =
1

β
=

(
ρ
∂p

∂ρ

∣∣∣∣
s

)−1

= −1

v

∂v

∂p

∣∣∣∣
s

(3.53)

4.4 Isothermal Compressibility

The isothermal bulk modulus is defined by equation (3.54).

βT = ρc2T (3.54)

This isothermal compressibility is defined by equation (3.55).

KT =
1

βT
=

(
ρ
∂p

∂ρ

∣∣∣∣
T

)−1

= −1

v

∂v

∂p

∣∣∣∣
T

(3.55)

The ∂p
∂ρ

∣∣∣
T

partial derivative is a calculated side effect of interpolating the tabulated data for p =

p(ρ, T).

4. ADDITIONAL THERMODYNAMIC QUANTITIES 19

It may be of interest to the user to empirically verify the constraint of equation (3.56), which

compares isothermal and adiabatic entropy.

c2T ≤ c2 (3.56)

4.5 Gruneisen Coefficient

The Gruneisen Coefficient is defined by equation (3.57).

Γ =
1

ρ

∂p

∂u

∣∣∣∣
ρ

(3.57)

The ∂p
∂u

∣∣∣
ρ

partial derivative is a calculated side effect of interpolating the tabulated data for p =

p(ρ, u).

Alternatively,

Γ =
1

ρ

∂p
∂T

∣∣∣∣
ρ

∂u
∂T

∣∣∣∣
ρ

=
1

cvρ

∂p

∂T

∣∣∣∣
ρ

(3.58)

4.6 Specific heats

The constant volume specific heat is defined by equation (3.59).

cv =
∂u

∂T

∣∣∣∣
v

=
∂u

∂T

∣∣∣∣
ρ

(3.59)

The ∂u
∂T

∣∣∣
ρ

partial derivative is a calculated side effect of interpolating the tabulated data for u =

u(ρ, T).

The constant pressure specific heat is defined by equation (3.60).

20 CHAPTER 3. BASIC THEORY AND MODELS

cp = T
∂s

∂T

∣∣∣∣
p

=
∂h

∂T

∣∣∣∣
p

(3.60)

Unfortunately, at this point, we find that the constant pressure specific heat cannot be calculated

using EOSPAC 6’s interpolation results. This is due to the fact that the ∂s
∂T

∣∣∣
p

is not available since

EOSPAC 6 does not calculate s = s(p, T). In an attempt to derive an alternative equation, the

following derivation is performed. The specific enthalpy is defined by equation (3.61).

h = u+ pv (3.61)

Using equations (3.60) and (3.61), the constant pressure specific heat is derived in equation (3.62).

cp =
∂u

∂T

∣∣∣∣
p

+ v
∂p

∂T

∣∣∣∣
v

+ p
∂v

∂T

∣∣∣∣
p

=
∂u

∂T

∣∣∣∣
p

+ p
∂v

∂T

∣∣∣∣
p

(3.62)

Given equation (3.44), the ∂v
∂T

∣∣∣∣
p

partial derivative is alternatively defined by equation (3.63).

∂v

∂T

∣∣∣∣
p

= −
∂p
∂T

∣∣∣∣
v

∂p
∂v

∣∣∣∣
T

(3.63)

Using equations (3.46) and (3.63), equation (3.62) can be rewritten as equation (3.64).

cp =
∂u

∂T

∣∣∣∣
p

+
p

ρ2

∂p
∂T

∣∣∣∣
ρ

∂p
∂ρ

∣∣∣∣
T

(3.64)

Unfortunately, the ∂u
∂T

∣∣∣
p

partial derivative is generally-unavailable using EOSPAC 6’s interpolation

methods on the SESAME data; therefore, an alternative form is required. Consider the ratio of

specific heats as defined in equation (3.65).

κ =
cp
cv

(3.65)

equation (3.65) can be rewritten as equation (3.66).

4. ADDITIONAL THERMODYNAMIC QUANTITIES 21

κ =

T ∂s
∂T

∣∣∣∣
p

T ∂s
∂T

∣∣∣∣
v

(3.66)

Using equation (3.44), both ∂s
∂T

∣∣∣∣
p

= −1(
∂T
∂p

∣∣∣∣
s

)(
∂p
∂s

∣∣∣∣
T

) and ∂s
∂T

∣∣∣∣
v

= −1(
∂T
∂v

∣∣∣∣
s

)(
∂v
∂s

∣∣∣∣
T

) are derived.

It follows that equation (3.66) can be rewritten as equation (3.67).

κ =

∂v
∂s

∣∣∣∣
T

∂T
∂v

∣∣∣∣
s

∂p
∂s

∣∣∣∣
T

∂T
∂p

∣∣∣∣
s

=

(
∂v

∂s

∣∣∣∣
T

∂s

∂p

∣∣∣∣
T

)(
∂T

∂v

∣∣∣∣
s

∂p

∂T

∣∣∣∣
s

)
(3.67)

Using the Chain Rule, equations (3.68) and (3.69) are derived.

∂v

∂p

∣∣∣∣
T

=
∂v

∂s

∣∣∣∣
T

∂s

∂p

∣∣∣∣
T

(3.68)

∂p

∂v

∣∣∣∣
s

=
∂p

∂T

∣∣∣∣
s

∂T

∂v

∣∣∣∣
s

(3.69)

Applying equations (3.68) and (3.69) to equation (3.67) yields equation (3.70).

κ =
∂v

∂p

∣∣∣∣
T

∂p

∂v

∣∣∣∣
s

(3.70)

From equations (3.45), (3.52) to (3.55) and (3.65), equation (3.70) can be rewritten as equa-

tion (3.71).

cp =
KT

Ks

cv =
c2

c2T
cv (3.71)

4.7 Thermal expansion alpha

The thermal expansion alpha is another derived quantity of interest, which is defined in equa-

tion (3.72).

22 CHAPTER 3. BASIC THEORY AND MODELS

αexp =
1

βT

∂p

∂T

∣∣∣∣
ρ

= KT
∂p

∂T

∣∣∣∣
ρ

(3.72)

4 GENERAL INTERFACE

DESCRIPTION

In many cases, the user interface to a program is the most important part for a

commercial company: whether the programs works correctly or not seems to be secondary.

– Linus Torvalds

This section describes, in general, the EOSPAC interface library and how a host code will use it.

Figure 4.1 shows how the EOSPAC public interface will interact with host codes written in various

languages.

Five host code languages are specifically targeted by the public interface of EOSPAC: C++, C, FOR-

TRAN 77, Fortran 90, and Fortran 2003. As shown in Figure 4.1, EOSPAC provides a flat1 public

interface with unmangled2 procedure definitions. The Fortran 2003 interface is the sole exception

to the flat interface paradigm; host codes written in Fortran 2003 may leverage a language-specific

interface, which uses the more modern mixed-language features of the Fortran 2003 specification.

The current interface definitions have the distinct advantage of providing the user with consistent

data types and procedure interfaces regardless of the host code’s language and working platform.

To ensure language interoperability and platform portability EOSPAC Version 6 is written using

the POSIX[?, ?] subset of C.

1Procedure arguments are reduced to a set of basic data types common to all applicable programming languages.
2Procedure names are ensured to be visible, unique and sensible across the multiple-programming-language in-

terface. In software compilation, name mangling (sometimes called name decoration) is a technique used to solve

various problems caused by the need to resolve unique names for programming entities in many modern programming

languages.

23

24 CHAPTER 4. GENERAL INTERFACE DESCRIPTION

Figure 4.1: General graphical description of the public user interface of

EOSPAC.

1 USE CASES

The use cases give an overview of typical user interactions with EOSPAC. There are only two such

cases, which may be used in various ways by a host code, a serial host code case and a parallel host

code case.

1.1 Serial Case

The serial case is shown in Figure 4.2. During the host code’s setup phase the data tables are

loaded, and setup options may be set or reset prior to and/or after the data is actually loaded

into memory. During the host code’s calculation phase the data of selected tables is accessed using

either interpolation or mixing, and interpolation/mixing options may be set or reset prior to and/or

1. USE CASES 25

after the data is actually accessed. This is done N times where N is problem dependent, but should

include at least one evaluation per data table so memory consumption is not frivolously wasted.

An optional step is to get information and comments about the loaded data tables, for example,

for debugging/informational purposes. This is done M times where M can vary from zero to the

number of data tables or a multiple thereof. The data tables are destroyed when the host code is

done using them.

Figure 4.2: Serial host code use of EOSPAC.

1.2 Parallel Case

The parallel case is shown in Figure 4.3. The “Load Tables” occurs on a single process (P0) and

is identical to the serial case. The same process, P0, then queries the size of the packed tables and

allocates storage to hold them. The P0 process then extracts the packed tables from EOSPAC. The

packed tables are then distributed to all child processes. Each child process then loads its packed

tables into EOSPAC. The data is then accessed on each process just as if it was a serial run. Each

26 CHAPTER 4. GENERAL INTERFACE DESCRIPTION

process then destroys its data tables when it is done using them.

Figure 4.3: Parallel host code use of EOSPAC.

5 SETUP MATERIAL DATA

You can have data without information, but you cannot have information without data.

– Daniel Keys Moran

The setup phase consists of calls to interface routines that establish EOSPAC data tables, which

are associated with unique identifiers called table handles, and loads them with appropriate data.

In addition to this setup routine, there exist routines to destroy data tables, pack their member

data into a portable array, and unpack such an array into data tables. The packed array features

allow parallel host codes to share data between processes if necessary.

1 DATA LOCATIONS

Before any description of how data is loaded, discarded, packed or unpacked within memory, it

is vital to know how EOSPAC is able to find the SESAME data files desired. To do so, three

algorithms are used to build a list of file names: 1) Environment-variable-defined and default search

paths, 2) Index file, and 3) Default file name list. Once all of these algorithms are completed,

the result is an ordered list of absolute-referenced file names that is subsequently edited to remove

all duplicate file references. File attributes and, if necessary, bitwise file comparisons are made to

eliminate any duplication of files. It is important to note here that two files are not considered

duplicates if only part of the contained data is identical. The ordered list of file names is written

to the TablesLoaded.dat file when either the EOS APPEND DATA or EOS DUMP DATA option

is set (see APPENDIX D).

27

28 CHAPTER 5. SETUP MATERIAL DATA

1.1 Environment-variable-defined and default search paths

Initially, the current working directory is put at the top of an ordered list of search paths. If EOSPAC

detects that the current environment has set the variable named SESAMEPATH, it parses it for

a list of search paths. Within the UNIX and Windows environments, this environment variable is

delimited by colons and semicolons respectively. These path names are appended to the ordered

list of paths. Finally, a default list of search paths is appended to the ordered list of paths:

DESCRIPTION PATH NAME

LANL Production data path /usr/projects/data/eos

LANL X-Div LAN data paths /usr/local/codes/data/eos

/opt/local/codes/data/eos

LANL Cray unclassified data path /usr/local/udata/ses

LANL Cray classified data path /usr/local/cdata

LLNL Production data path /usr/gapps/lanl-data/eos

SANDIA Production data path /projects/lanl-data/eos

1.2 Ordered File Names List Creation

For each of the search paths found by the algorithm described in chapter 5 section 1.1, the two

remaining algorithms are executed in order. These two remaining algorithms are described in

chapter 5 sections 1.3 and 1.4 respectively, and Figure 5.1 contains a flowchart description of how

they are implemented.

NEW for 6.2.2
As of version 6.2.2, EOSPAC will parse a “sesameFilesDir.txt” found in the current

working directory every time the eos CreateTables routine is called. This modification allows the

host code to dynamically incorporate changes to the ordered files list.

1.3 Index file

EOSPAC tests for the existence of an index file, a text file named “sesameFilesDir.txt” (Figure 5.2),

within the specified search path found by the algorithm described in chapter 5 section 1.1.

1. DATA LOCATIONS 29

Figure 5.1: Flowchart description of file search algorithms.

If the index file is found, it is parsed according to the following rules to find references to SESAME

data files:

• Delimiters include linefeed, carriage return, and semicolon.

• Comments are ignored and begin with #.

• Leading white space is ignored.

30 CHAPTER 5. SETUP MATERIAL DATA

Distributed Sesame file list

Unix absolute reference (two file names per line)

/usr/local/codes/data/eos/sesame;/usr/local/codes/data/eos/sescu

Unix absolute reference (one file name per line)

/usr/local/codes/data/eos/sescu1

/usr/local/codes/data/eos/sescu9

/usr/local/codes/data/eos/sesou

DOS/Windows absolute reference (two file names per line)

I:\data\eos\sesame;I:\data\eos\sescu

alternative DOS/Windows absolute references

\\xfiles\codes\data\eos\sescu1

\\xfiles\codes\data\eos\sescu9

\\xfiles\codes\data\eos\sesou

relative references with respect to this index file’s location

export-controlled/ieee64/sesame;export-controlled/ieee64/sescu

export-controlled/ieee64/sescu1

export-controlled/ieee64/sescu9

export-controlled/ieee64/sesou

associate material id and Sesame file

MATID 9001 sesame3

MATID 9002 ../../../sesame3

MATID 9003 /usr/local/codes/data/eos/sesame3

Figure 5.2: Example of sesameFilesDir.txt.

• Paths that are relative to the opened index file are converted to absolute paths.

• Invalid file names are silently ignored. A file name is invalid if it doesn’t exist or it exceeds

1. DATA LOCATIONS 31

the maximum number of characters (PATH MAX) for the current file system. The value of

PATH MAX is discussed further in chapter 5 section 3.4.

• NEW for 6.2.1
If the the case-sensitive token, END, is found as the first non-whitespace

characters on a line in the index file, then no other files will be added to the ordered file list,

which is defined in chapter 5 section 1.2. This feature is available as of version 6.2.1.

• NEW for 6.2.2
If the case-sensitive token, MATID, is found as the first non-whitespace

characters on a line in the index file, then the remainder of the line shall contain a material ID

(integer) and the associated SESAME file name. A file association to a material ID supersedes

any previous associations (e.g., associating 9001 to sesame3 and then to sesame2 will retain

the last association). See Figure 5.2 for examples. It is important to note that once a material

ID is associated with a specific SESAME file, the association will remain until either the code

terminates or another explicit association is provided – there exists no mechanism to reset to

the default data search algorithm. This feature is available as of version 6.2.2.

• The MATID and END tokens constrain the data loaded for all table handles (i.e., it is a global

effect). To set table handle-specific constraints, see the eos GetMaxDataFileNameLength and

eos SetDataFileName functions described in chapter 5 sections 3.4 and 3.9 respectively.

Once parsed, the list of file names found in “sesameFilesDir.txt” is appended to the list of SESAME

data file names to be searched.

1.4 Default file name list

For compatibility with earlier versions of EOSPAC and old distributions of SESAME files, a default

list of file names has been preserved. This ordered list of file names is provided in Table 5.2. This

list of file names, if found within the specified search path found by the algorithm described in

section chapter 5 section 1.1, is appended to the ordered list of files that will be searched for any

requested data.

Table 5.2: Ordered list of default SESAME file names.

File Name File Name File Name

1 sesameu 2 sesameu1 3 sesameu2

4 sesameu3 5 sesameu4 6 sesamea

Continued on next page

32 CHAPTER 5. SETUP MATERIAL DATA

Table 5.2: Ordered list of default SESAME file names. (Continued from previous page.)

File Name File Name File Name

7 sesamea1 8 sesamea2 9 sesameb

10 sesamec 11 sesame 12 sesame1

13 sesame2 14 sesame3 15 sesame4

16 sesep 17 sesep1 18 sesep2

19 sesep3 20 sesep4 21 sesou

22 sesou1 23 sesou2 24 sesou3

25 sesou4 26 sesop 27 sesop1

28 sesop2 29 sesop3 30 sesop4

31 sescu 32 sescu1 33 sescu2

34 sescu3 35 sescu4 36 sescu9

37 sescp 38 sescp1 39 sescp2

40 sescp3 41 sescp4

1.5 Ordered File Names List Example

Assume that the current working directory is defined as follows:

~/FILES/eospac6.00branch/Source/tests

Assume that the following SESAME data files exist for the machine being used:

~/FILES/tmp/tests/data/sesame1

~/FILES/tmp/tests/data/sesame3

~/FILES/sesame/081105/sesame_bin_081105

~/FILES/sesame/081105/sesame_bin_081105_sgi

~/FILES/sesame/081105/sesame

~/FILES/code/bll/test/sesame/sesame

~/FILES/code/bll/test/sesame/sescresu

~/FILES/code/bll/test/sesame/sescu

~/FILES/code/bll/test/sesame/sescu1

~/FILES/code/bll/test/sesame/sescu9

1. DATA LOCATIONS 33

~/FILES/code/bll/test/sesame/sesou

~/FILES/eospac6_mainbranch/Source/tests/data/sesame1

~/FILES/eospac6_mainbranch/Source/tests/data/sesame3

~/FILES/eospac6_mainbranch/Source/tests/alt_tests/sesameFilesDir.txt

~/FILES/eospac6_mainbranch/Source/tests/alt_tests/lambda_parallel/sesame3

~/FILES/eospac6_automake_tests/Source/tests/data/sesame1

~/FILES/eospac6_automake_tests/Source/tests/data/sesame3

~/FILES/eospac6.00branch/Source/tests/data/sesame1

~/FILES/eospac6.00branch/Source/tests/data/sesame3

~/FILES/eospac6.00branch/Source/tests/sesameFilesDir.txt

~/FILES/eospac6.10alpha.7/Source/tests/data/sesame1

~/FILES/eospac6.10alpha.7/Source/tests/data/sesame3

~/FILES/eospac6.10alpha.7/Source/tests/sesameFilesDir.txt

~/FILES/eospac6.10alpha.7/Source/tests/alt_tests/sesameFilesDir.txt

~/FILES/eospac6.10alpha.7/Source/tests/alt_tests/lambda_parallel/sesame3

Assume that “sesameFilesDir.txt” in the current working directory that contains the following

information:

Sesame3 test data file list

./data/sesame3

Sesame1 test data file list

./data/sesame1

Assume the value of the SESAMEPATH environment variable to contain

"/usr/projects/data/eos/export-controlled/ieee64:\${HOME}/FILES

/eospac6.10alpha.7/Source/tests/data:\${HOME}/FILES/code/bll/t

est/sesame"

Given all of the above assumptions, the ordered list of files names would be as follows:

0. ././data/sesame3

34 CHAPTER 5. SETUP MATERIAL DATA

1. ././data/sesame1

2. /usr/projects/data/eos/export-controlled/ieee64/sesame

3. /usr/projects/data/eos/export-controlled/ieee64/sesou

4. /usr/projects/data/eos/export-controlled/ieee64/sescu

5. /usr/projects/data/eos/export-controlled/ieee64/sescu1

6. /usr/projects/data/eos/export-controlled/ieee64/sescu9

7. /users/myhome/./FILES/eospac6.10alpha.7/Source/tests/data/sesame1

8. /users/myhome/./FILES/eospac6.10alpha.7/Source/tests/data/sesame3

9. /users/myhome/FILES/code/bll/test/sesame/sesame

10. /users/myhome/FILES/code/bll/test/sesame/sesou

11. /users/myhome/FILES/code/bll/test/sesame/sescu

12. /users/myhome/FILES/code/bll/test/sesame/sescu1

13. /users/myhome/FILES/code/bll/test/sesame/sescu9

14. /usr/projects/data/eos/sesame

15. /usr/projects/data/eos/sesou

16. /usr/projects/data/eos/sescu

17. /usr/projects/data/eos/sescu1

18. /usr/projects/data/eos/sescu9

2 DATA ORGANIZATION

As briefly described in this chapter’s introduction, the loaded data is referenced by unique table

handles. The arguments of the interface routines are organized into a set of ordered arrays such

that each array element corresponds to a data table.

For example, the table types (see APPENDICES B and C), SESAME material ID numbers, table

options (see APPENDIX A) and error codes (see APPENDIX H) are stored within identically

dimensioned arrays (see Figure 5.3). Each row of Figure 5.3 specifies a data table that is referenced

by the table handle. This conceptual organization is used for all the setup routine arguments that

are arrays.

2. DATA ORGANIZATION 35

Figure 5.3: Input/output data organization.

If the host specifies the loading of identical data for multiple table handles (inadvertently or other-

wise), then EOSPAC will share the identical data between the two table handles (Figure 5.4). In

other words, the two unique handle values will point to the same data object within EOSPAC’s

internal data structures. This practice is not recommended because it unnecessarily complicates

the loaded data’s organization.

Figure 5.4: Duplicate data organization.

36 CHAPTER 5. SETUP MATERIAL DATA

3 ROUTINES AND PARAMETERS

The routines and their associated parameters for setting up the material data are discussed in this

section.

NEW for 6.3.1
The default EOSPAC behavior is to delay the inversion of tables (i.e., transform

tabulated data to achieve new dependent and independent variables) until the EOSPAC interpo-

lation phase as necessary, according to the requirements of the specified data table type. Since

the release of version 6.3.1, the EOS INVERT AT SETUP option allows the host code to force

EOSPAC to create inverted tables for each specified table handle during the setup phase. The

resulting inverted tables are then used during interpolation, and no iterative search algorithm is

required, which improves interpolation performance. Of course, it must be understood that this will

likely produce different interpolation results than the default behavior, because the inverted table

grid may be of insufficient resolution. The quantification of such numeric differences are beyond

the scope of this manual – see chapter 9 section 7 and APPENDIX D for additional details.

3.1 eos CreateTables

The eos CreateTables routine allocates all memory to store the specified data tables. After calling

eos CreateTables, the host code may need to call eos SetOption so the desired set up options can

be changed from the documented defaults.

The input arguments are:

nTables This is the scalar EOS INTEGER total number of data tables

on which to operate.

tableType This is an EOS INTEGER array containing the list of table

types corresponding to each member data table, Ti, where i =

1...nTables. See APPENDICES A and C for table type details.

matID This is an EOS INTEGER array containing the SESAME mate-

rial identification numbers corresponding to each member data

table, Ti, where i = 1...nTables.

The output arguments are:

3. ROUTINES AND PARAMETERS 37

tableHandles This is an array of EOS INTEGER handles to particular data

tables. Each handle corresponds to a member data table, Ti,

where i = 1...nTables. The host code is responsible for manag-

ing this array of table handles.

WARNING: If the host code changes any of the tableHandle

values, then the logical effect may be likened to a memory leak

– unpredictable and potentially-catastrophic behavior is to be

expected. This is particularly true if negative values are used in

lieu of the valid tableHandle values.

errorCode This is a scalar EOS INTEGER variable to contain an error

code that may indicate one or more of the tables could not

be created. The host code must call eos GetErrorCode and

eos GetErrorMessage to retrieve error details for a specified

tableHandle. See APPENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7, section 1.1.

3.2 eos DestroyAll

The eos DestroyAll routine releases all memory associated with any remaining data tables and

temporary cached data used by EOSPAC routines internally. It is strongly recommended that this

routine be used when the currently defined set of SESAME data files is no longer used (i.e., just

prior to the end of the host code’s execution).

There are no input arguments.

The output argument is:

38 CHAPTER 5. SETUP MATERIAL DATA

errorCode This is a scalar EOS INTEGER variable to contain an error

code that may indicate failure to release all memory associ-

ated with temporary cached data. The host code must call

eos GetErrorMessage to retrieve error details. See APPENDIX

H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

3.3 eos DestroyTables

The eos DestroyTables routine releases all memory associated with the specified data tables.

The input arguments are:

nTables This is the scalar EOS INTEGER total number of data tables

on which to operate.

tableHandles This is an array of EOS INTEGER handles to particular data

tables. Each handle corresponds to a member data table, Ti,

where i = 1...nTables. The host code is responsible for manag-

ing this array of table handles.

The output argument is:

errorCode This is a scalar EOS INTEGER variable to contain an error

code that may indicate one or more of the tables could not

be destroyed. The host code must call eos GetErrorCode and

eos GetErrorMessage to retrieve error details for a specified

tableHandle. See APPENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

3. ROUTINES AND PARAMETERS 39

3.4 eos GetMaxDataFileNameLength

NEW for 6.2.2
The eos GetMaxDataFileNameLength routine is used to query the maximum num-

ber of characters (PATH MAX) for the current file system. This is a file system-dependent value

with typical values like those shown in Table 5.8.

Table 5.8: Some typical values of PATH MAX.

File System Length (bytes)

Mac OSX (i386 and PPC) 1024

Modern Linux (i686 and x86 64) 4096

Solaris (Sparc) 1024

Windows/Cygwin 260

There are no input arguments.

The output argument is:

max length This is a scalar EOS INTEGER to contain the definition of

PATH MAX.

3.5 eos GetPackedTables

The eos GetPackedTables routine fills a character array with the specified data table’s data. The

eos GetPackedTables routine is used to extract the data tables from EOSPAC to allow multithreaded

codes to share the data. This routine is also useful for preparing data tables to be written to a host

code’s binary restart file.

Before calling this routine the host code must call eos GetPackedTablesSize to determine packedTa-

blesSize, the total number of bytes required to contain the data associated with the specified data

tables, allowing the host code to allocate adequate storage.

The input arguments are:

nTables This is the scalar EOS INTEGER total number of data tables

on which to operate.

40 CHAPTER 5. SETUP MATERIAL DATA

tableHandles This is an array of EOS INTEGER handles to particular data

tables. Each handle corresponds to a member data table, Ti,

where i = 1...nTables. The host code is responsible for manag-

ing this array of table handles.

The output arguments are:

packedTables This is an array of EOS CHAR that is used to store all of the

member data of specified data tables. This array is designed to

allow the host code to share data between multiple processors.

If dynamic memory allocation for arrays is not possible, then

this routine will prove difficult to use since it is to be allocated

to hold packedTablesSize characters, where packedTablesSize is

returned from the eos GetPackedTablesSize routine.

errorCode This is a scalar EOS INTEGER variable to contain an error

code. See APPENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

3.6 eos GetPackedTablesSize

The eos GetPackedTablesSize routine calculates the total number of bytes required to contain the

data associated with the specified data tables. The eos GetPackedTablesSize routine is used with

the eos GetPackedTables routine.

The input arguments are:

nTables This is the scalar EOS INTEGER total number of data tables

on which to operate.

tableHandles This is an array of EOS INTEGER handles to particular data

tables. Each handle corresponds to a member data table, Ti,

where i = 1...nTables. The host code is responsible for manag-

ing this array of table handles.

3. ROUTINES AND PARAMETERS 41

The output arguments are:

packedTablesSize This is the scalar EOS INTEGER number of bytes required

to hold a specified list of data tables’ member data -– size of

packedTables.

errorCode This is a scalar EOS INTEGER variable to contain an error

code. See APPENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

3.7 eos GpuOffloadData

NEW for 6.5
In relation to porting the EOSPAC interpolation functionality to the GPU1, version

6.5 introduces a new API2 function that is used to offload all currently-loaded data onto the first

available GPU device. This new function is only available if the EOSPAC library is compiled with

the requisite DO_OFFLOAD preprocessor macro. The OpenMP3 4.5 framework is used to offload data

and kernels to the GPU device.

There are no input arguments.

The output arguments are:

errorCode This is a scalar EOS INTEGER variable to contain an error

code. See APPENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

This new API function’s purpose is to finish the setup phase of EOSPAC’s operation by offloading

the loaded data to the available GPU and preventing the loading of additional data before the host

code calls eos DestroyAll. Figure 5.5 augments figure 4.2 by graphically-describing the usage of

eos GpuOffloadData in relation to the various phases of EOSPAC operation. Each instance (e.g.,

1Graphics Processing Unit
2Application Programming Interface
3https://www.openmp.org/

https://www.openmp.org/

42 CHAPTER 5. SETUP MATERIAL DATA

MPI rank) is responsible for calling eos GpuOffloadData after the data have been distributed to all

ranks.

Figure 5.5: Usage of eos GpuOffloadData in relation to the various phases

of EOSPAC operation.

If the user’s code is C/C++ and uses the #include "eos_Interface.h", then it must either define

the DO_OFFLOAD preprocessor macro to enable the inclusion of the prototype listed above or explicitly

copy the prototype into his code. In order to simplify usage, this requirement will likely change in

future releases.

When the host code uses the GPU-enabled version of EOSPAC and offloads the loaded data using the

eos GpuOffloadData function, the host code is responsible for providing device pointers to the input

and output arrays of eos Interpolate. If this requirement is not met, then a code execution failure is

expected. Of course, if the data is not offloaded using eos GpuOffloadData, then the standard host

pointers are to be used. As of the release of version 6.5, the interpolation functionality is limited

on the GPU as follows:

• Usage of EOS INVERT AT SETUP— is required for all inverted data types. If this option is

not set for inverted data table types during the setup phase, then unpredictable code execution

3. ROUTINES AND PARAMETERS 43

failures will occur during the interpolation phase.

• A code assertion will occur during interpolation if any unsupported data table type is used.

Ssee APPENDIX B for a comprehensive list of GPU-compatible data table types.

• Extrapolation checking is disabled during interpolation; however, the host code retains the

option to call eos CheckExtrap to determine if xVals and yVals cause extrapolation.

• No internal copies of xVals and yVals are created; instead the EOS USE HOST XY is enabled

(see APPENDIX D).

3.8 eos LoadTables

The eos LoadTables routine fills a collection of data tables with the requested data tables from

SESAME. Before calling this routine the host code must call eos CreateTables to initialize memory

for data tables and retrieve valid table handles. The host code may also need to call eos SetOption,

prior to calling eos LoadTables, so the desired set up options can be changed from the documented

defaults (see APPENDIX D).

The input arguments are:

nTables This is the scalar EOS INTEGER total number of data tables

on which to operate.

tableHandles This is an array of EOS INTEGER handles to particular data

tables. Each handle corresponds to a member data table, Ti,

where i = 1...nTables. The host code is responsible for manag-

ing this array of table handles.

The output argument is:

errorCode This is a scalar EOS INTEGER variable to contain an error code

that may indicate failure to load the data. The host code must

call eos GetErrorCode and eos GetErrorMessage to retrieve er-

ror details for a specified tableHandle. See APPENDIX H for

error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

44 CHAPTER 5. SETUP MATERIAL DATA

3.9 eos SetDataFileName

NEW for 6.2.2
The eos SetDataFileName routine is used to set the file name for a specified table

handle. This will constrain EOSPAC to searching for applicable data within the specified file, if it’s a

valid file. See chapter 5 section 3.4 for details concerning the maximum length of the file name. This

routine will fix an invalid table handle if it was invalidated by a previous call to eos CreateTables.

This routine must be called prior to eos LoadTables for the specified table handle; otherwise an error

will be returned. This routine should be used in conjunction with eos GetMaxDataFileNameLength.

The input arguments are:

tableHandle This is a scalar EOS INTEGER handle to a particular data ta-

ble. The host code is responsible for managing this table handle.

matID This is a scalar EOS INTEGER containing the SESAME ma-

terial identification number corresponding to the member data

table.

tableType This is a scalar EOS INTEGER containing the table type cor-

responding to the member data table. See APPENDICES B

and C for table type details.

fileName This is a character string, of a maximum length defined by the

constant named PATH MAX, which is to contain the specified

file name.

The output argument is:

errorCode This is a scalar EOS INTEGER variable to contain an error

code. See APPENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

3.10 eos SetPackedTables

The eos SetPackedTables routine fills the specified data tables with data tables stored as a char-

acter array. Typically this is used to insert the data tables into the EOSPAC data structures

3. ROUTINES AND PARAMETERS 45

after a multithreaded code has shared the data tables extracted by eos GetPackedTables. The

eos SetPackedTables routine can also be used to unpack data tables recovered from a host code’s

binary restart file.

The input arguments are:

nTables This is the scalar EOS INTEGER total number of data tables

on which to operate.

packedTablesSize This is the scalar EOS INTEGER number of bytes required

to hold a specified list of data tables’ member data -– size of

packedTables.

packedTables This is an array of EOS CHAR that is used to store all of the

member data of specified data tables. This array is designed to

allow the host code to share data between multiple processors.

If dynamic memory allocation for arrays is not possible, then

eos SetPackedTables will prove difficult to use since packedTa-

bles must hold packedTablesSize characters, where packedTab-

lesSize is returned from the eos GetPackedTablesSize routine.

The output arguments are:

tableHandles This is an array of EOS INTEGER handles to particular data

tables. Each handle corresponds to a member data table, Ti,

where i = 1...nTables. The host code is responsible for manag-

ing this array of table handles.

WARNING: The actual table handle value returned to the host

code for any specific table, Ti, is not guaranteed to be consistent

with the value generated by eos CreateTables; this is a behavior

likened to an address returned by C malloc.

errorCode This is a scalar EOS INTEGER variable to contain an error code

that may indicate failure to unpack the data. See APPENDIX

H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

46 CHAPTER 5. SETUP MATERIAL DATA

4 C/C++ LANGUAGE BINDINGS

void eos CreateTables (EOS INTEGER *nTables,

EOS INTEGER tableType[],

EOS INTEGER matID[],

EOS INTEGER tableHandles[],

EOS INTEGER *errorCode);

void eos DestroyAll (EOS INTEGER *errorCode);

void eos DestroyTables (EOS INTEGER *nTables,

EOS INTEGER tableHandles[],

EOS INTEGER *errorCode);

void eos GetMaxDataFileNameLength (EOS INTEGER *max length);

void eos GetPackedTables (EOS INTEGER *nTables,

EOS INTEGER tableHandles[],

EOS CHAR *packedTables,

EOS INTEGER *errorCode);

void eos GetPackedTablesSize (EOS INTEGER *nTables,

EOS INTEGER tableHandles[],

EOS INTEGER *packedTablesSize,

EOS INTEGER *errorCode);

void eos GpuOffloadData (EOS INTEGER *errorCode);

void eos LoadTables (EOS INTEGER *nTables,

EOS INTEGER tableHandles[],

EOS INTEGER *errorCode);

void eos SetDataFileName (EOS INTEGER *tableHandle,

EOS INTEGER *matID,

EOS INTEGER *tableType,

EOS CHAR *fileName,

EOS INTEGER *errorCode);

void eos SetPackedTables (EOS INTEGER *nTables,

EOS INTEGER *packedTablesSize,

EOS CHAR *packedTables,

EOS INTEGER tableHandles[],

EOS INTEGER *errorCode);

5. FORTRAN LANGUAGE BINDINGS 47

Use the header file named “eos Interface.h” to define both the function prototypes listed above and

the necessary constants used by EOSPAC. See chapter 10 for usage examples of these routines.

5 FORTRAN LANGUAGE BINDINGS

subroutine eos CreateTables (EOS INTEGER nTables,

EOS INTEGER tableType(*),

EOS INTEGER matID(*),

EOS INTEGER tableHandles(*),

EOS INTEGER errorCode)

subroutine eos DestroyAll (EOS INTEGER errorCode)

subroutine eos DestroyTables (EOS INTEGER nTables,

EOS INTEGER tableHandles(*),

EOS INTEGER errorCode)

subroutine eos GetMaxDataFileNameLength (EOS INTEGER max length)

subroutine eos GetPackedTables (EOS INTEGER nTables,

EOS INTEGER tableHandles(*),

EOS CHAR packedTables,

EOS INTEGER errorCode)

subroutine eos GetPackedTablesSize (EOS INTEGER nTables,

EOS INTEGER tableHandles(*),

EOS INTEGER packedTablesSize,

EOS INTEGER errorCode)

subroutine eos GpuOffloadData (EOS INTEGER errorCode)

subroutine eos LoadTables (EOS INTEGER nTables,

EOS INTEGER tableHandles(*),

EOS INTEGER errorCode)

subroutine eos SetDataFileName (EOS INTEGER tableHandle,

EOS INTEGER matID,

EOS INTEGER tableType,

EOS CHAR fileName,

EOS INTEGER errorCode)

48 CHAPTER 5. SETUP MATERIAL DATA

subroutine eos SetPackedTables (EOS INTEGER nTables,

EOS INTEGER packedTablesSize,

EOS CHAR packedTables,

EOS INTEGER tableHandles(*),

EOS INTEGER errorCode)

Within a Fortran 77 host code, use the header file named “eos Interface.fi” to define the necessary

constants used by EOSPAC. See chapter 10 for Fortran 77 host code examples of using these

routines.

Within a Fortran 90 host code, use the Fortran module named “eos Interface” to define the necessary

constants used by EOSPAC. See chapter 10 for Fortran 90 host code examples of using these

routines.

6 INTERPOLATE MATERIAL DATA

Those who rule data will rule the entire world.

– Masayoshi Son

The interpolation phase consists of calls to interface routines that use an established EOSPAC data

table and return interpolated data requested by the host code. These routines are the most common

way to use the data tables.

1 DATA ORGANIZATION

Unlike the setup routines, the interpolation routines perform their function on data associated with

a single table handle.

2 ROUTINES AND PARAMETERS

NEW for 6.3
For each of the routines described in this section, all of the interpolation options de-

fined in APPENDIX F are applicable; however, two new interpolation phase options have been intro-

duced that are of particular interest to users wanting to improve performance: EOS XY MODIFY

and EOS XY PASSTHRU.

NEW for 6.3.1
A new setup option has been introduced: EOS INVERT AT SETUP —- see chap-

ter 5 section 3, chapter 9 section 7 and APPENDIX D for additional details.

Normally, EOSPAC will create temporary internal copies of the xVals and yVals arrays passed from

49

50 CHAPTER 6. INTERPOLATE MATERIAL DATA

the host code into the following routines. These temporary arrays are then modified according to

the conversion factors that may have been previously set using the eos SetOption routine. The

EOS XY MODIFY and EOS XY PASSTHRU options disable the creation of the temporary copies

of xVals and yVals. The EOS XY MODIFY option instructs EOSPAC to directly change the values

in the host code’s xVals and yVals arrays into SESAME-compatible units using the conversion fac-

tors that may have been previously set using the eos SetOption routine. The EOS XY PASSTHRU

option instructs EOSPAC to make no changes to the xVals and yVals arrays – rather the values in

the host code’s xVals and yVals arrays are assumed to already be in SESAME-compatible units.

NEW for 6.5
A new interpolation option, EOS USE HOST XY has been added. This new option

enables the EOS XY MODIFY option’s associated logic, and then it enables new logic to revert the

modified xVals and yVals inputs after interpolation is completed. Be aware that the application of

the host-supplied conversion factors may not identically-reproduce the original xVals and yVals in-

put values. Another interpolation option, EOS SKIP EXTRAP CHECK, disables all extrapolation

checks except when the host code calls the eos CheckExtrap function, which is described below.

Both of these new options are defined in APPENDIX G, and they are implemented to provide use

cases to the end user that maximize the performance of eos Interpolate on either the CPU1 or the

GPU2.

Using the OpenMP 4.5 target offload features, GPU kernels have been created for selected API

functions as described below.

2.1 eos CheckExtrap

If the EOS INTERP EXTRAPOLATED error code is returned by either eos Interpolate or eos Mix,

then the eos CheckExtrap routine allows the user to determine which (x, y) pairs caused extrapola-

tion and in which direction (high or low), it occurred. The units of the xVals, and yVals arguments

listed below are determined by the units listed for each tableType in APPENDICES B and C.

The input arguments are:

tableHandle This is a scalar EOS INTEGER handle to a particular data ta-

ble. The host code is responsible for managing this table handle.

nXYPairs This is the total number of pairs of independent variable values

provided for interpolation for the specified table.

1Central Processing Unit
2Graphics Processing Unit

2. ROUTINES AND PARAMETERS 51

xVals This is an array of the primary independent variable values to

use during interpolation. There are nXYPairs elements in xVals.

yVals This is an array of the secondary independent variable values

to use during interpolation. There are nXYPairs elements in

yVals.

The output arguments are:

xyBounds This is an array of size nXYPairs elements that returns EOS OK

if extrapolation did not occur. If extrapolation occurred the

variable and direction are determined from Table 3.

errorCode This is a scalar EOS INTEGER variable to contain an error

code. See APPENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7, section 1.1.

In the case that eos Mix returned EOS INTERP EXTRAPOLATED as an error code, an additional

series of steps must be performed to determine which table handles correspond to the extrapolation

error:

1. For each tableHandle sent to eos Mix, call eos GetErrorCode and, optionally, eos GetErrorMessage.

2. For each of these tableHandles, call eos CheckExtrap to determine one of codes listed in

Table 6.3.

Table 6.3: Extrapolation return codes.

Code Definition

EOS OK No extrapolation occurred.

EOS xHi yHi Both the x and y arguments were high.

EOS xHi yOk The x argument was high, the y argument was OK.

EOS xHi yLo The x argument was high, the y argument was low.

EOS xOk yLo The x argument is OK and the y argument is low.

Continued on next page

52 CHAPTER 6. INTERPOLATE MATERIAL DATA

Table 6.3: Extrapolation return codes. (Continued from previous page.)

Code Definition

EOS xLo yLo Both the x and y arguments were low.

EOS xLo yOk The x argument was low, the y argument was OK.

EOS xLo yHi The x argument was low, the y argument was OK.

EOS xOk yHi The x argument is OK and the y argument is high.

EOS CANT INVERT DATA Can’t invert with respect to the required independent

variable.

EOS CONVERGENCE FAILED Iterative algorithm did not converge during inverse inter-

polation.

EOS UNDEFINED The result is undefined.

Some additional details regarding the error codes listed in Table 6.3 are listed as follows:

1. If the y argument corresponds to a temperature value, then a zero temperature was used for

interpolation rather than the value supplied by the host code.

2. If the x argument corresponds to a density value, then a zero density was used for interpolation

rather than the value supplied by the host code.

2.2 eos Interpolate

The eos Interpolate routine provides interpolated values for a single material using a table handle

associated with data stored within a data table. Before calling eos Interpolate, the host code may

need to call eos SetOption so the desired interpolation options can be changed from the documented

defaults. The units of the xVals, yVals, fVals, dFx and dFy arguments listed below are determined

by the units listed for each tableType in APPENDICES B and C.

NEW for 6.5
If the eos GpuOffloadData function has been used by the host code, then it is

assumed that all pointers passed into and out of this eos Interpolate function are GPU device

pointers that reference memory on the GPU itself rather than the traditional CPU memory heap.

Specifically, for C/C++ hosts, the OpenMP3 method named omp_target_alloc (or its equivalent)

is assumed to have been used by the host to allocate memory on the GPU device. Similarly, a Fortran

3https://www.openmp.org/

https://www.openmp.org/

2. ROUTINES AND PARAMETERS 53

host is assumed to use a compatible allocation method and a corresponding device attribute (i.e.,

CUDA4) to define and allocate device memory for the input/output arrays of eos Interpolate. To

leverage the interpolation GPU kernel it is important for the user to ensure that the table type(s)

used is compatible for offload to the GPU; APPENDIX B indicates which table types are actually

compatible with the GPU offload.

The input arguments are:

tableHandle This is a scalar EOS INTEGER handle to a particular data.

The host code is responsible for managing this table handle.

nXYPairs This is the scalar EOS INTEGER total number of pairs of in-

dependent variable values provided for interpolation.

xVals This is an EOS REAL array of the primary independent variable

values to use during interpolation. There are nXYPairs elements

in xVals.

yVals This is an EOS REAL array of the secondary independent vari-

able values to use during interpolation. There are nXYPairs

elements in yVals.

The output arguments are:

fVals This is an EOS REAL array of the interpolated data correspond-

ing to the given independent variable data (x and y). There are

nXYPairs elements in fVals, unless the tableHandle is associ-

ated with the EOS M DT table type (see chapter 9, section 4

for details).

dFx This is an EOS REAL array of the interpolated partial deriva-

tives of fVals with respect to x. There are nXYPairs elements

in dFx.

dFy This is an EOS REAL array of the interpolated partial deriva-

tives of fVals with respect to y. There are nXYPairs elements

in dFy.

4https://developer.nvidia.com/cuda-fortran

https://developer.nvidia.com/cuda-fortran

54 CHAPTER 6. INTERPOLATE MATERIAL DATA

errorCode This is a scalar EOS INTEGER variable to contain an error

code. See APPENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7, section 1.1.

2.3 eos Mix

The mixed material interpolation uses established EOSPAC data tables and returns interpolated

data of mixed materials requested by the host code. The eos Mix routine is the typical way to

generate mixed material data using the data tables’ member data tables. The data tables to be

mixed must be of the same table type. An error code is returned if the table type is not valid for

mixing (EOS NullTable, EOS Info, etc.). The table types that are valid for eos Mix are limited to

the following short list5 of 29 table types:

EOS B DT EOS Ktc DT EOS Pt DT EOS T DUic EOS Uic DT

EOS Kc DT EOS Pc D EOS Pt DUt EOS T DUt EOS Ut DPt

EOS Kec DT EOS Pe DT EOS T DPe EOS Uc D EOS Ut DT

EOS Keo DT EOS Pe DUe EOS T DPic EOS Ue DPe EOS Zfc DT

EOS Kp DT EOS Pic DT EOS T DPt EOS Ue DT EOS Zfo DT

EOS Kr DT EOS Pic DUic EOS T DUe EOS Uic DPic

The eos Mix routine will provide interpolated values corresponding to mixtures of materials in

pressure (or pressure and temperature) equilibrium, and the algorithm was derived from the original

MIXPAC[?] package. Additional information concerning the EOS mixing algorithm is found in

reference[?]. Before calling eos Mix, the host code may need to call eos SetOption so the desired

interpolation and/or mixing options can be changed from the documented defaults. The units of

the xVals, yVals, fVals, dFx and dFy arguments listed below are determined by the units listed for

each tableType in APPENDICES B and C.

The input arguments are:

nTables This is the total number of data tables on which to operate.

5These are cross-referenced to those of EOSPAC 5[?],[?] within APPENDIX C.

2. ROUTINES AND PARAMETERS 55

tableHandles This is an array of EOS INTEGER handles to the tables to be

mixed.

nXYPairs This is the total number of pairs of independent variable values

provided for interpolation for each table.

concInMix This is an EOS REAL array containing the number fraction

concentration corresponding to each independent variable value

pair and to each tableHandle of the desired data to mix. There

are nTables*nXYPairs elements in concInMix, and it is stored

sequentially in memory as follows:

[concInMix(i+(j-1)*nXYPairs): i=1 to nXYPairs], j=1

to nTables

Note that the index, i, varies fastest as memory addresses in-

crease incrementally.

xVals This is an EOS REAL array of the primary independent variable

values to use during interpolation. There are nXYPairs elements

in xVals.

yVals This is an EOS REAL array of the secondary independent vari-

able values to use during interpolation. There are nXYPairs

elements in yVals.

The output arguments are:

fVals This is an EOS REAL array of the interpolated data correspond-

ing to the given independent variable data (x and y). There are

nXYPairs elements in fVals.

dFx This is an EOS REAL array of the interpolated partial deriva-

tives of fVals with respect to x. There are nXYPairs elements

in dFx.

dFy This is an EOS REAL array of the interpolated partial deriva-

tives of fVals with respect to y. There are nXYPairs elements

in dFy.

56 CHAPTER 6. INTERPOLATE MATERIAL DATA

errorCode This is a scalar EOS INTEGER variable to contain an error

code. See APPENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7, section 1.1.

3 C/C++ LANGUAGE BINDINGS

void eos CheckExtrap (EOS INTEGER *tableHandle,

EOS INTEGER *nXYPairs,

EOS REAL *xVals,

EOS REAL *yVals,

EOS INTEGER *xyBounds,

EOS INTEGER *errorCode);

void eos Interpolate (EOS INTEGER *tableHandle,

EOS INTEGER *nXYPairs,

EOS REAL *xVals,

EOS REAL *yVals,

EOS REAL *fVals,

EOS REAL *dFx,

EOS REAL *dFy,

EOS INTEGER *errorCode);

void eos Mix (EOS INTEGER *nTables,

EOS INTEGER *tableHandles,

EOS INTEGER *nXYPairs,

EOS REAL *concInMix,

EOS REAL *xVals,

EOS REAL *yVals,

EOS REAL *fVals,

EOS REAL *dFx,

EOS REAL *dFy,

EOS INTEGER *errorCode);

4. FORTRAN LANGUAGE BINDINGS 57

Use the header file named “eos Interface.h” to define both the function prototypes listed above and

the necessary constants used by EOSPAC. See chapter 10 for usage examples of these routines.

4 FORTRAN LANGUAGE BINDINGS

subroutine eos CheckExtrap (EOS INTEGER tableHandle,

EOS INTEGER nXYPairs,

EOS REAL xVals(*),

EOS REAL yVals(*),

EOS INTEGER xyBounds(*),

EOS INTEGER errorCode)

subroutine eos Interpolate (EOS INTEGER tableHandle,

EOS INTEGER nXYPairs,

EOS REAL xVals(*),

EOS REAL yVals(*),

EOS REAL fVals(*),

EOS REAL dFx(*),

EOS REAL dFy(*),

EOS INTEGER errorCode)

subroutine eos Mix (EOS INTEGER nTables,

EOS INTEGER tableHandles(*),

EOS INTEGER nXYPairs,

EOS REAL concInMix(*),

EOS REAL xVals(*),

EOS REAL yVals(*),

EOS REAL fVals(*),

EOS REAL dFx(*),

EOS REAL dFy(*),

EOS INTEGER errorCode)

Within a Fortran 77 host code, use the header file named “eos Interface.fi” to define the necessary

constants used by EOSPAC. See chapter 10 for Fortran 77 host code examples of using these

routines.

58 CHAPTER 6. INTERPOLATE MATERIAL DATA

Within a Fortran 90 host code, use the Fortran module named “eos Interface” to define the necessary

constants used by EOSPAC. See chapter 10 for Fortran 90 host code examples of using these

routines.

7 MISCELLANEOUS INFORMATION

ROUTINES

Data is a tool for enhancing intuition.

– Hilary Mason

This section provides descriptions of some routines that submit or return miscellaneous information

about or related to a data table or its contents. These routines are the only way to set or retrieve

this information.

1 ROUTINES AND PARAMETERS

The routines and parameters that provide miscellaneous information are shown below.

1.1 eos ErrorCodesEqual

NEW for 6.3
The eos ErrorCodesEqual routine is used to determine if the provided EOSPAC

error code corresponds to a specified standard error code. This routine is required because the

error codes returned by most EOSPAC 6 routines are now encoded with an associated table handle,

which means their values are dynamic. Only the EOS OK error code is exempt from using this

routine to test equivalence.

The input arguments are:

59

60 CHAPTER 7. MISCELLANEOUS INFORMATION ROUTINES

err1 This is a scalar EOS INTEGER that corresponds to either the

error code in question or a standard error code defined in AP-

PENDIX H.

err2 This is a scalar EOS INTEGER that corresponds to either the

error code in question or a standard error code defined in AP-

PENDIX H.

The output arguments are:

result This is a scalar EOS BOOLEAN to contain the true/false equiv-

alence status of err1 and err2.

1.2 eos GetErrorCode

The eos GetErrorCode routine is used to the most recent EOSPAC error code that corresponds to

a specific table handle.

The input argument is:

tableHandle This is a scalar EOS INTEGER handle to a particular data ta-

ble. The host code is responsible for managing this table handle.

The output argument is:

errorCode This is a scalar EOS INTEGER to contain the requested error

code. See APPENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

1.3 eos GetErrorMessage

The input argument is:

1. ROUTINES AND PARAMETERS 61

errorCode This is a scalar EOS INTEGER to contain an error code.

The output argument is:

errorMsg This is a character string of a maximum length defined by the

constant named EOS MaxErrMsgLen.

1.4 eos GetTableCmnts

The eos GetTableCmnts routine returns the comments available about the requested data table.

The eos GetTableCmnts routine operates on a single data table corresponding to a valid table

handle.

Before calling eos GetTableCmnts, the host code must call eos GetTableInfo to find out the length

of the comments, lenCmnts, allowing the host code to allocate adequate storage.

The input argument is:

tableHandle This is the scalar EOS INTEGER handle to particular data ta-

ble.

The output arguments are:

cmntStr This is a string of EOS CHAR, of length lenCmnts, containing

the requested comments. The value of lenCmnts for each table-

Handle can be obtained by calling eos GetTableInfo using the

constant named EOS Cmnt Len (see APPENDIX E for details).

If dynamic memory allocation for strings is not possible, then

eos GetTableCmnts will prove difficult to use.

62 CHAPTER 7. MISCELLANEOUS INFORMATION ROUTINES

errorCode This is a scalar EOS INTEGER variable to contain an er-

ror code that may indicate the comment table(s) could not

be loaded. The host code must call eos GetErrorCode and

eos GetErrorMessage to retrieve error details for a specified

tableHandle. See APPENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

1.5 eos GetTableInfo

The eos GetTableInfo routine is returns the values of requested information about data table mem-

bers. This routine operates on a single data table corresponding to a valid table handle. Information

is requested by passing a list of parameters to the routine that returns the requested information

in the same order. The information that can be requested is in APPENDIX E.

The input arguments are:

tableHandle This is the EOS INTEGER handle to particular data table.

numInfoItems EOS INTEGER scalar number of information items requested.

infoItems This is an EOS INTEGER array of information items requested.

The allowed values are in APPENDIX E.

The output arguments are:

infoVals This is an EOS REAL array containing the information items

requested. It contains numInfoItems values. The values are in

the same order as requested in the infoItems array.

errorCode This is a scalar EOS INTEGER to contain the error code. The

host code must call eos GetErrorCode and eos GetErrorMessage

to retrieve error details for a specified tableHandle. See AP-

PENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

1. ROUTINES AND PARAMETERS 63

1.6 eos GetMetaData

NEW for 6.3
The eos GetMetaData routine returns the value of requested meta information cor-

responding to a pair of constants, which are supplied to the routine by the host code. This routine

reveals meta-data that is used internally by EOSPAC; therefore, no valid table handle is required

prior to its use. The information that can be requested is defined in APPENDIX F.

The input arguments are:

infoItem This is a scalar EOS INTEGER used to specify the desired in-

formation item. The allowed values are in APPENDIX F.

infoItemCategory This is a scalar EOS INTEGER used to specify the category

of the desired information item. The allowed values are in AP-

PENDIX F.

The output arguments are:

infoStr This is a character string containing the information item

requested. This string must be allocated by the host

code, and it is required to be the minmum length of

EOS META DATA STRLEN characters.

errorCode This is a scalar EOS INTEGER to contain the error code. The

host code must call eos GetErrorCode and eos GetErrorMessage

to retrieve error details for a specified tableHandle. See AP-

PENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

1.7 eos GetTableMetaData

NEW for 6.3
The eos GetTableMetaData routine returns the value of requested meta information

corresponding to a valid table handle and a constant, which is defined in APPENDIX F.

The input arguments are:

64 CHAPTER 7. MISCELLANEOUS INFORMATION ROUTINES

tableHandle This is the EOS INTEGER handle to particular data table.

infoItem This is a scalar EOS INTEGER specifying the desired informa-

tion item. The allowed values are in APPENDIX F.

The output arguments are:

infoStr This is a character string containing the information item

requested. This string must be allocated by the host

code, and it is required to be the minmum length of

EOS META DATA STRLEN characters.

errorCode This is a scalar EOS INTEGER to contain the error code. The

host code must call eos GetErrorCode and eos GetErrorMessage

to retrieve error details for a specified tableHandle. See AP-

PENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

1.8 eos GetVersion

The eos GetVersion routine is used to retrieve a character string defining the current version of

EOSPAC.

There are no input arguments.

The output argument is:

Version This is a character string of a maximum length defined by the

value returned by eos GetVersionLength.

1.9 eos GetVersionLength

The eos GetVersionLength routine is used to retrieve the length of the string returned by eos GetVersion.

1. ROUTINES AND PARAMETERS 65

There are no input arguments.

The output argument is:

Length This is a scalar EOS INTEGER defining the length of the string

returned by eos GetVersion. This length includes the null (’\0’)

terminating character, which is used in the “C” programming

language.

1.10 eos ResetOption

The eos ResetOption routine is used to reset an option related to a specified table handle to it

default state (see APPENDICES D and F for default settings). The eos ResetOption routine is

used prior to calling eos LoadTables, eos Interpolate, and/or eos Mix to specify applicable options

for each table handle.

The input arguments are:

tableHandle This is a scalar EOS INTEGER handle to a particular data ta-

ble. The host code is responsible for managing this table handle.

tableOption This is a scalar EOS INTEGER containing the option flag in-

dicating what option to set corresponding to the tableHandle.

See APPENDICES D and F for table option details.

The output argument is:

errorCode This is a scalar EOS INTEGER to contain the error code. The

host code must call eos GetErrorCode and eos GetErrorMessage

to retrieve error details for a specified tableHandle. See AP-

PENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

66 CHAPTER 7. MISCELLANEOUS INFORMATION ROUTINES

1.11 eos SetOption

The eos SetOption routine is used to set an option related to a specified table handle. The

eos SetOption routine is used prior to calling eos LoadTables, eos Interpolate, and/or eos Mix to

specify applicable options for each table handle.

The input arguments are:

tableHandle This is a scalar EOS INTEGER handle to a particular data ta-

ble. The host code is responsible for managing this table handle.

tableOption This is a scalar EOS INTEGER containing the option flag in-

dicating what option to set corresponding to the tableHandle.

See APPENDICES D and F for table option details.

tableOptionVal This is a scalar EOS REAL containing the option value to be

assigned to the tableHandle. Note that not all of the option

flags defined in APPENDICES D and F use this value; however,

a variable or literal is required when calling eos SetOption due

to the limitations of a flat public interface.

The output argument is:

errorCode This is a scalar EOS INTEGER to contain the error code. The

host code must call eos GetErrorCode and eos GetErrorMessage

to retrieve error details for a specified tableHandle. See AP-

PENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos ErrorCodesEqual routine described

in chapter 7 section 1.1.

2 C/C++ LANGUAGE BINDINGS

void eos ErrorCodesEqual (EOS INTEGER *err1,

EOS INTEGER *err2,

EOS BOOLEAN *result);

2. C/C++ LANGUAGE BINDINGS 67

void eos GetErrorCode (EOS INTEGER *tableHandle,

EOS INTEGER *errorCode);

void eos GetErrorMessage (EOS INTEGER *errorCode,

EOS CHAR errorMsg[EOS MaxErrMsgLen]);

void eos GetMetaData (EOS INTEGER *infoItem,

EOS INTEGER *infoItemCategory,

EOS CHAR *infoStr,

EOS INTEGER *errorCode);

void eos GetTableMetaData (EOS INTEGER *tableHandle,

EOS INTEGER *infoItem,

EOS CHAR *infoStr,

EOS INTEGER *errorCode);

void eos GetTableCmnts (EOS INTEGER *tableHandle,

EOS CHAR *cmntStr,

EOS INTEGER *errorCode);

void eos GetTableInfo (EOS INTEGER *tableHandle,

EOS INTEGER *numInfoItems,

EOS INTEGER infoItems[],

EOS REAL infoVals[],

EOS INTEGER *errorCode);

void eos GetVersion (EOS CHAR *version);

void eos GetVersionLength (EOS INTEGER *length);

void eos ResetOption (EOS INTEGER *tableHandle, const

EOS INTEGER *tableOption,

EOS INTEGER *errorCode);

void eos SetOption (EOS INTEGER *tableHandle, const

EOS INTEGER *tableOption, const

EOS REAL *tableOptionVal,

EOS INTEGER *errorCode);

Use the header file named “eos Interface.h” to define both the function prototypes listed above and

the necessary constants used by EOSPAC. See chapter 10 for usage examples of these routines.

68 CHAPTER 7. MISCELLANEOUS INFORMATION ROUTINES

3 FORTRAN LANGUAGE BINDINGS

subroutine eos ErrorCodesEqual (EOS INTEGER err1,

EOS INTEGER err2,

EOS BOOLEAN result)

subroutine eos GetErrorCode (EOS INTEGER tableHandle,

EOS INTEGER errorCode)

subroutine eos GetErrorMessage (EOS INTEGER errorCode,

EOS CHAR errorMsg(EOS MaxErrMsgLen))

subroutine eos GetMetaData (EOS INTEGER infoItem,

EOS INTEGER infoItemCategory,

EOS CHAR infoStr,

EOS INTEGER errorCode)

subroutine eos GetTableMetaData (EOS INTEGER tableHandle,

EOS INTEGER infoItem,

EOS CHAR infoStr,

EOS INTEGER errorCode)

subroutine eos GetTableInfo (EOS INTEGER tableHandle,

EOS INTEGER numInfoItems,

EOS INTEGER infoItems,

EOS REAL infoVals,

EOS INTEGER errorCode)

subroutine eos GetTableCmnts (EOS INTEGER tableHandle,

EOS CHAR cmntStr,

EOS INTEGER errorCode)

subroutine eos GetVersion (EOS CHAR version)

subroutine eos GetVersionLength (EOS INTEGER length)

subroutine eos ResetOption (EOS INTEGER tableHandle,

EOS INTEGER tableOption,

EOS INTEGER errorCode)

subroutine eos SetOption (EOS INTEGER tableHandle,

EOS INTEGER tableOption,

EOS REAL tableOptionVal,

EOS INTEGER errorCode)

3. FORTRAN LANGUAGE BINDINGS 69

Within a Fortran 77 host code, use the header file named “eos Interface.fi” to define the necessary

constants used by EOSPAC. See chapter 10 for Fortran 77 host code examples of using these

routines.

Within a Fortran 90 host code, use the Fortran module named “eos Interface” to define the necessary

constants used by EOSPAC. See chapter 10 for Fortran 90 host code examples of using these

routines.

70 CHAPTER 7. MISCELLANEOUS INFORMATION ROUTINES

8 TOOLS

I can make just such ones if I had tools, and I could make tools if I had tools to make

them with.

– Eli Whitney

If one is interested in calculating quantities without the need to write a host code to use the EOSPAC

interface, then there are some utilities, which are distributed with EOSPAC, to accomplish various

tasks. One such utility was previously mentioned (see section 4), get_sesame_data. Given a

Sesame material ID and table number, get_sesame_data will extract data from Sesame database

and send it to stdout in a format compatible with GNUPLOT’s input requirements for a 2-D plot.

There are several command line variations for get_sesame_data :

1. get_sesame_data [OPTIONS] <sesMaterialNum> <sesTableNum> [<sesSubtableIndex>]

2. get_sesame_data [OPTIONS] id [<file>]

3. get_sesame_data [OPTIONS] tables <sesMaterialNum> [, <sesMaterialNum> [, ...]]

4. get_sesame_data [OPTIONS] comments <sesMaterialNum> [, <sesMaterialNum> [, ...]]

5. get_sesame_data [OPTIONS] <sesMaterialNum>

<sesMaterialNum> Sesame material ID number

<sesTableNum> Sesame table number

<sesSubtableIndex> Optional Sesame subtable number (default=1).

Another utility named interp_sesame_data is also distributed with EOSPAC that allows a user

to perform various data interpolations from the command line. There are multiple command line

variations for interp_sesame_data:

71

72 CHAPTER 8. TOOLS

1. interp_sesame_data [<OPTIONS>] <sesMaterialNum> <tableType> <x>[:<x1>]

[<y>[:<y1>]]

2. interp_sesame_data [<OPTIONS>] <sesMaterialNum> <tableType> -i <file>

<sesMaterialNum>

Sesame material ID number

<tableType>

EOSPAC 6 table type (case insensitive)

<x>

First independent variable value of the table type (64-bit floating point)

This argument is required unless either the ’-i’ or the ’-x’ option is used.

The optional :<x1> defines an upper bound for a randomly-sampled range of

values between <x> and <x1>.

<y>

Second independent variable value of the table type (64-bit floating point)

This argument is required unless either the ’-i’ or the ’-y’ option is used.

The optional :<y1> defines an upper bound for a randomly-sampled range of

values between <y> and <y1>.

All of the utilites described in this section include online help, which can be viewed by using the

desired tool’s “-h” option.

9 SELECTED NUMERIC DETAILS

The reason is not to glorify “bit chasing”; a

more fundamental issue is at stake here: Numerical subroutines should deliver results that

satisfy simple, useful mathematical laws whenever possible. [...] Without any underlying

symmetry properties, the job of proving interesting results becomes extremely unpleasant.

The enjoyment of one’s tools is an essential ingredient of successful work.

– Donald Knuth, Vol. II, Seminumerical Algorithms, Section 4.2.2 part A, final paragraph

This section provides additional descriptions of some complex EOSPAC features, which are imple-

mented to address some numeric issue or other.

1 CUSTOM SMOOTHING AND INTERPOLATION

At the request of the user community, some very specific data smoothing capabilities of SAGE1

have been added to EOSPAC. These features correspond to the setup and interpolation options

EOS PT SMOOTHING, EOS ADJUST VAP PRES, and EOS USE CUSTOM INTERP. When the

setup option, EOS PT SMOOTHING, is enabled for a table handle, the loaded equation of state

data is smoothed in preparation for using the EOS USE CUSTOM INTERP interpolation option.

The setup option, EOS ADJUST VAP PRES, is provided as a mechanism to shift the vapor pres-

sure data according to

Pi = Pi − Pshift
(

1− Pi
Pi−1

)
(9.1)

1SAGE is a one-, two-, and three-dimensional, multi-material Eulerian hydrodynamics code (LA-UR-04-2959).

73

74 CHAPTER 9. SELECTED NUMERIC DETAILS

where Pshift is the user-provided pressure value (GPa) that is used to ensure the ambient conditions

of the tabulated data are acceptable. This vapor pressure adjustment has often been deemed neces-

sary, and it is material-dependent. Once the data has been loaded and smoothed according to the

rules associated with EOS PT SMOOTHING and EOS ADJUST VAP PRES, interpolation may be

performed with the EOS USE CUSTOM INTERP option set. This interpolation option is limited

to use with the EOS Ut PtT and EOS V PtT data types (pressure- and temperature-dependent

internal-energy and specific volume respectively). The EOS USE CUSTOM INTERP interpolation

option uses linear interpolation to calculate the desired values from isotherms, which contain data

made to conform to Maxwell’s relations (Maxwell Construction, or Equal Area Construction). Any

basic thermodynamics textbook should contain a description of Maxwell’s relations.

2 FORCED DATA MONOTONICITY

Much of the data in the SESAME database is not monotonic with respect to one or both of the

tabulated independent variables. This is a problem when a data table is to be inverted with respect

to one of the tabulated independent variables. To ensure either global increasing- or decreasing-

monotonicity, a simple algorithm is used, in which the average of a function’s local minimum and

local maximum is determined and then used to replace the local tabulated function values. Once

that is done monotonicity is achieved, but a small slope is then imposed over the localized region

so that either global increasing- or decreasing-monotonicity is imposed. The aforementioned small

slope is calculated to be three-orders-of-magnitude larger than the machine’s floating point precision

(i.e., 10−12 on a 64-bit IEEE machine). It is important to note that this forced data monotonicity

algorithm is not an “equal-area” calculation, which is used to impose Maxwell constructions on an

EOS. Figure 9.1 graphically describes the result (orange line) of this algorithm when applied to

an isotherm (blue line) of an arbitrary pressure function. Although it cannot be seen due to the

plot’s pressure range, the orange line actually has an artificial slope of approximately 10−12 in the

nearly-horizontal region, where the left-most pressure value of said region is the average of Pmin

and Pmax. The aforementioned monotonicity-enforcing algorithm is imposed from the independent

variable’s minimum to maximum values.

3. EXTENDED PRECISION IS DISABLED 75

Figure 9.1: General depiction of P (ρ) forced to be

monotonically-increasing.

3 EXTENDED PRECISION IS DISABLED

In an effort to improve the portability of EOSPAC, the extended precision features of some machine

architectures are disabled upon entry to any of EOSPAC’s public routines, and then the extended

precision is re-enabled prior to exiting said public routines. The problem of extended precision is

described as follows[?]:

The IEEE-754 standard defines the bit-level behavior of floating-point arithmetic oper-

ations on all modern processors. This allows numerical programs to be ported between

different platforms with identical results, in principle. In practice, there are often minor

variations caused by differences in the order of operations (depending on the compiler

and optimization level) but these are generally not significant.

However, more noticeable discrepancies can be seen when porting numerical programs

between x86 systems and other platforms, because the the x87 floating point unit (FPU)

on x86 processors computes results using extended precision internally (the values being

76 CHAPTER 9. SELECTED NUMERIC DETAILS

converted to double precision only when they are stored to memory). In contrast, proces-

sors such as SPARC, PA-RISC, Alpha, MIPS and POWER/PowerPC work with native

double-precision values throughout. The differences between these implementations lead

to changes in rounding and underflow/overflow behavior, because intermediate values

have a greater relative precision and exponent range when computed in extended preci-

sion. In particular, comparisons involving extended precision values may fail where the

equivalent double precision values would compare equal.

To avoid these incompatibilities, the x87 FPU also offers a hardware double-precision

rounding mode. In this mode the results of each extended- precision floating-point oper-

ation are rounded to double precision in the floating- point registers by the FPU. It is

important to note that the rounding only affects the precision, not the exponent range,

so the result is a hybrid double-precision format with an extended range of exponents.

On BSD systems such as FreeBSD, NetBSD and OpenBSD, the hardware double- pre-

cision rounding mode is the default, giving the greatest compatibility with native double

precision platforms. On x86 GNU/Linux systems the default mode is extended precision

(with the aim of providing increased accuracy). To enable the double-precision round-

ing mode it is necessary to override the default setting on per-process basis using the

FLDCW ”floating-point load control-word” machine instruction.

As a result of the problem described above, every effort is made to disable extended precision

arithmetic on x86 machines.

4 MASS FRACTION DATA INTERPOLATION

For selected materials, Sesame contains mass fraction data tables, which tabulate phase-specific (i.e.,

beta, gamma, liquid, etc.) mass fraction data. EOSPAC has the capability to access and interpolate

this mass fraction data if it’s available. To implement this capability while minimizing changes to

the public interface specification, the eos GetTableInfo function (chapter 7 section 1.5) is used with

eos Interpolate (chapter 6 section 2.2) in an unusual way. Once the material data is loaded into

memory using the EOS M DT data type option, the host code must call eos GetTableInfo to obtain

the total number of tabulated phases (see the EOS NUM PHASES parameter in APPENDIX E).

Then the eos Interpolate output array (fVals) must be allocated so that all of the material’s phases

can be interpolated at once; however, allocation of the derivative arrays (dFx and dFy) is not

required since they are ignored within EOSPAC. For example, if nXYPairs is set to ten and the

5. NUMERICAL INTEGRATION 77

number of phases is three, then the output array for eos Interpolate are each allocated to hold

thirty values; whereas, the input arrays (xVals and yVals) are only allocated to hold ten values.

The interpolated output is organized so that each phase’s interpolated mass fractions are stored in

turn. The following “C” code snippet demonstrates how the input and output arrays are organized:

xVals = (EOS_REAL *) malloc (sizeof (EOS_REAL) * nXYPairs);

yVals = (EOS_REAL *) malloc (sizeof (EOS_REAL) * nXYPairs);

fVals = (EOS_REAL *) malloc (sizeof (EOS_REAL) * num_phases * nXYPairs);

for (j = 0; j < num_phases; j++) {

for (k = 0; k < nXYPairs; k++) {

printf ("%23.15e %23.15e %23.15e\n",

xVals[k], yVals[k], fVals[nXYPairs*j + k]);

}

}

To maintain data integrity, the interpolation is limited to use only the bilinear (EOS LINEAR)

interpolator for the EOS M DT data type.

5 NUMERICAL INTEGRATION

The capability to calculate entropy data is implemented with multiple algorithms. One such algo-

rithm depends upon the numerical integration of the tabulated internal energy data with respect

to temperature. To perform the numerical integration, a simple trapezoid rule is implemented.

A specific note of interest is that the trapezoid integration equally-divides each tabulated tem-

perature interval into ninety-nine sub-intervals prior to interpolation. The hard-wired number of

sub-intervals was chosen arbitrarily because it seemed adequate. Another, but more subtle, item

to note is that the form of equation (3.2) is implemented within EOSPAC so that the integrand

values, u
T 2 , for all applicable tabulated data are passed to the interpolator within the trapezoid

integration algorithm instead of interpolating the internal energy, u = u(ρ, T), prior to calculating

the integrand. This smoothes the calculated results by damping incurred numerical errors.

78 CHAPTER 9. SELECTED NUMERIC DETAILS

6 LINEAR AND BILINEAR INTERPOLATION

As of EOSPAC 6.2, the default linear/bilinear interpolators were replaced with a new algorithm

that calculates continuous derivatives at the tabulated grid points. This feature was a departure

from the discontinuous derivatives calculated by all previous versions of EOSPAC.

NEW for 6.3
A new interpolation option is introduced to allow a user to mitigate some unforeseen

side effects of the continuous derivatives. The option name is EOS DISCONTINUOUS DERIVATIVES,

because it reintroduces the original linear/bilinear interpolator logic that existed before EOSPAC

6.2.

Figure 9.2: Comparison of derivative values for three low temper-

ature isotherms using the EOS LINEAR interpolation option both

with and without the EOS DISCONTINUOUS DERIVATIVES

option enabled.

6. LINEAR AND BILINEAR INTERPOLATION 79

Figure 9.3: Comparison of derivative values for three low temper-

ature isotherms using the EOS LINEAR interpolation option both

with and without the EOS DISCONTINUOUS DERIVATIVES

option enabled. This demonstrates numerical issues with the cur-

rent default bilinear interpolator’s continuous derivatives at or near

the data table boundary.

Figures 9.2 and 9.3 the differences between the calculated derivatives when using the bilinear inter-

polator both with and without the EOS DISCONTINUOUS DERIVATIVES option enabled. On

one hand, Figure 9.2 demonstrates an assumed advantage the continuous derivatives provide.

Unfortunately, Figure 9.3 demonstrates an example of some unforeseen numerical noise introduced

by the same continuous derivative calculations —- particularly near the data table boundaries where

the interpolated values are small. Such numerical noise has been observed away from the tabulated

table boundaries where the interpolated values are small, and this behavior can violate the ex-

80 CHAPTER 9. SELECTED NUMERIC DETAILS

pected monotonicity-preserving characteristics of the linear/bilinear interpolator for the calculated

derivatives.

7 INVERT AT SETUP

NEW for 6.3.1
The EOS INVERT AT SETUP option, which was previously described in chap-

ter 5 section 3, allows the host code to force EOSPAC to create inverted tables for each specified

table handle during the setup phase. This, of course improves interpolation performance for the af-

fected table(s). The downside to improved performance is that one should expect degraded accuracy

for the interpolated results, because the inverted table grid may be of insufficient resolution. It was

declared that the quantification of such numeric differences are beyond the scope of this manual;

however, it is useful for the user to be aware that additional documentation is available that describes

in detail both numerical and performance results associated with the EOS INVERT AT SETUP

option’s usage.[?],[?],[?],[?]

7.1 Data Transformations

In order to highlight how EOSPAC 6 transforms selected data when it is loaded in conjunction with

the EOS INVERT AT SETUP option, first consider that historical versions of EOSPAC [?],[?],[?]

used the following data transforms to create the grids of varied inverted tables:

P ∗(ρ, T) =
Pt(ρ, T)− Pc(ρ)

ρ
(9.2)

U∗(ρ, T) = Ut(ρ, T)− Uc(ρ) (9.3)

A∗(ρ, T) = At(ρ, T)− Ac(ρ) (9.4)

In addition to using those historical transforms, EOSPAC 6 now eliminates the isochore at ρ = 0

prior to table inversion, because it causes P ∗(ρ, T)→∞ and it is not a physically-meaningful state

of matter.

One can easily recognize that the transforms defined by equations (9.2) to (9.4), eliminate much

of the dynamic range of the Pt, Ut and At by subtracting their associated cold curve data. Ad-

7. INVERT AT SETUP 81

ditionally, it is apparent from the ideal gas law that internal energy is directly proportional to

temperature. Where v = 1/ρ, the differential for internal energy is dependent upon (v, T)

dU =

(
∂U

∂T

)
v

TdT +

(
∂U

∂v

)
T

Tdv (9.5)

One of the important features of an ideal gas is that its internal energy depends only upon its

temperature, so equation (9.5) becomes

dU =

(
∂U

∂T

)
v

TdT (9.6)

From equations (9.3) and (9.6), it is concluded that

U∗ ∝ T (9.7)

Similar reasoning is applied to conclude that

A∗ ∝ T (9.8)

Similarly, the ideal gas law states that the ratio of pressure and density is directly proportional to

temperature:

Pv = RT (9.9)

The R of equation (9.9) is the Universal Gas Constant.

Given v = 1/ρ, equation (9.9) can be rewritten as

P

ρ
= RT (9.10)

From equations (9.2) and (9.10), it is concluded that

P ∗ ∝ T (9.11)

82 CHAPTER 9. SELECTED NUMERIC DETAILS

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e-06 0.0001 0.01 1 100 10000 1e+06

T

D

Semi-Generalized Grid Map for f(D,T)
Material 3720

Figure 9.4: Rectangular SESAME grid of density (D) and tem-

perature (T).

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e-06 0.0001 0.01 1 100 10000 1e+06

U
t

D

Semi-Generalized Grid Map for f(D,Ut)
Material 3720

Figure 9.5: Non-rectangular SESAME grid of density (D) and

internal energy (Ut).

Given the fact that SESAME data is tabulated with density and temperature as independent

variables, it is reasonable to conclude that the transforms of equations (9.2) to (9.4) create data

that are “temperature-like” quantities, and the non-rectangular grids represented in

7. INVERT AT SETUP 83

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e-06 0.0001 0.01 1 100 10000 1e+06

Pt

D

Semi-Generalized Grid Map for f(D,Pt)
Material 3720

Figure 9.6: Non-rectangular SESAME grid of density (D) and

pressure (Pt).

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e-08 1e-06 0.0001 0.01 1 100 10000 1e+06 1e+08 1e+10 1e+12

T

Pt

Semi-Generalized Grid Map for f(Pt,T)
Material 3720

Figure 9.7: Non-rectangular SESAME grid of pressure (Pt) and

temperature (T).

figures 9.5 to 9.7 are transformed into rectangular grid of density (ρ) and a “temperature-like”

quantity like the representation in figure 9.4. The tranformed grids of figures 9.5 and 9.6 are shown

in figures 9.8 and 9.9 respectively. While the transformed grids shown in figures 9.8 and 9.9 are

84 CHAPTER 9. SELECTED NUMERIC DETAILS

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e-06 0.0001 0.01 1 100 10000 1e+06

U
*

D

Semi-Generalized Grid Map for f(D,Ut)
Material 3720

Figure 9.8: Transformed, rectangular SESAME grid of internal

energy (U ∗) and temperature (T).

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e-06 0.0001 0.01 1 100 10000 1e+06

P*

D

Semi-Generalized Grid Map for f(D,Pt)
Material 3720

Figure 9.9: Transformed, rectangular SESAME grid of pressure

(P ∗) and temperature (T).

not perfectly-rectangular like that of figure 9.4, the distributions are similar enough to stablize the

interpolated results over the entire table ranges. No transforms are applied to data associated with

(P, T) grid like that in figure 9.7.

7. INVERT AT SETUP 85

7.2 Usage of EOS INSERT DATA

It has been shown[?] that using the EOS INSERT DATA option can improve the numerical accuracy

of interpolation associated with the EOS INVERT AT SETUP option; however, the benefit of this

enhancement is dependent upon the selected table type, the chosen SESAME material ID and

the number of points inserted (i.e., the EOS INSERT DATA option’s tableOptionVal argument).

Therefore, some trial an error may be required to achieve the desired accuracy when compared to

the default interpolation mode without the EOS INVERT AT SETUP option enabled.

For example, figures 9.10 and 9.11 show the birational interpolation accuracy improvement when

the EOS INSERT DATA option’s tableOptionVal=2, which increases the table’s associated memory

usage by an approximate factor of 9. The figures show the relative differences between the interpo-

lation results, both with and without the EOS INVERT AT SETUP option enabled, are compared.

This demonstrates that there is a price to be paid for improved interpolation performance.

Figure 9.10: Color map of relative differences comparing the interpolation

of T (ρ, P t), which was calculated using both of EOSPAC 6’s default and

pre-inverted (i.e., EOS INVERT AT SETUP) inverse interpolation modes.

86 CHAPTER 9. SELECTED NUMERIC DETAILS

Figure 9.11: Color map of relative differences comparing the interpolation

of T (ρ, P t), which was calculated using both of EOSPAC 6’s default and

pre-inverted (i.e., EOS INVERT AT SETUP) inverse interpolation modes

and the EOS INSERT DATA=2 option enabled.

10 USAGE EXAMPLES

Reading computer manuals without the hardware is as frustrating as reading sex manuals

without the software.

– Arthur C. Clarke

It’s time to use the software on the available hardware. This section contains various examples

showing the usage of the interface routines defined in chapters 5 to 7.

1 C HOST CODE EXAMPLE

1 /***

2 * Example Program

3 * ---

4 * Filetype: (SOURCE)

5 *

6 * Copyright -- see file named COPYRIGHTNOTICE

7 *

8 **/

9

10 /*! \file

11 * \ingroup examples

12 * \brief This is a simple C example of how to use EOSPAC6 interface.

13 */

14

15 #include <stdio.h>

16 #include <stdlib.h>

87

88 CHAPTER 10. USAGE EXAMPLES

17 #include "eos_Interface.h"

18

19 int main ()

20 {

21 enum

22 { nTablesE = 5 };

23 enum

24 { nXYPairsE = 4 };

25 enum

26 { nInfoItemsE = 12 };

27

28 EOS_INTEGER i, j;

29 EOS_REAL X[nXYPairsE], Y[nXYPairsE], F[nXYPairsE], dFx[nXYPairsE],

30 dFy[nXYPairsE];

31 EOS_INTEGER tableType[nTablesE], numIndVars[nTablesE];

32 EOS_INTEGER matID[nTablesE];

33 EOS_INTEGER tableHandle[nTablesE];

34 EOS_INTEGER errorCode;

35 EOS_INTEGER tableHandleErrorCode;

36 EOS_INTEGER nTables;

37 EOS_INTEGER nXYPairs;

38 EOS_REAL infoVals[nInfoItemsE];

39 EOS_INTEGER nInfoItems;

40 EOS_INTEGER infoItems[nInfoItemsE] = {

41 EOS_Cmnt_Len,

42 EOS_Exchange_Coeff,

43 EOS_F_Convert_Factor,

44 EOS_Log_Val,

45 EOS_Material_ID,

46 EOS_Mean_Atomic_Mass,

47 EOS_Mean_Atomic_Num,

48 EOS_Modulus,

49 EOS_Normal_Density,

50 EOS_Table_Type,

51 EOS_X_Convert_Factor,

52 EOS_Y_Convert_Factor

53 };

54 EOS_CHAR *infoItemDescriptions[nInfoItemsE] = {

1. C HOST CODE EXAMPLE 89

55 "The length in characters of the comments available for the specified data table",

56 "The exchange coefficient",

57 "The conversion factor corresponding to the dependent variable, F(x,y)",

58 "Non-zero if the data table is in a log10 format",

59 "The SESAME material identification number",

60 "The mean atomic mass",

61 "The mean atomic number",

62 "The solid bulk modulus",

63 "The normal density",

64 "The type of data table. Corresponds to the parameters in APPENDIX B and APPENDIX C",

65 "The conversion factor corresponding to the primary independent variable, x",

66 "The conversion factor corresponding to the secondary independent variable, y"

67 };

68 EOS_CHAR *tableTypeLabel[nTablesE] = {

69 "EOS_Pt_DT",

70 "EOS_Dv_T",

71 "EOS_Ogb",

72 "EOS_Comment",

73 "EOS_Info"

74 };

75 EOS_CHAR errorMessage[EOS_MaxErrMsgLen];

76

77 EOS_INTEGER one = 1;

78

79 nTables = nTablesE;

80 nXYPairs = nXYPairsE;

81 nInfoItems = nInfoItemsE;

82

83 /*

84 * EOS_Pt_DT, material 2140 works for Sesame table 301 (record type 1)

85 * EOS_Dv_T, material 2140 works for Sesame table 401 (record type 2)

86 * EOS_Ogb, material 12140 works for Sesame table 501 (record type 3)

87 * EOS_Comment, material 2140 works for Sesame tables 101-199 (record type 4)

88 * EOS_Info, material 2140 works for Sesame table 201 (record type 5)

89 */

90 tableType[0] = EOS_Pt_DT;

91 tableType[1] = EOS_Dv_T;

92 tableType[2] = EOS_Ogb;

90 CHAPTER 10. USAGE EXAMPLES

93 tableType[3] = EOS_Comment;

94 tableType[4] = EOS_Info;

95

96 numIndVars[0] = 2;

97 numIndVars[1] = 1;

98 numIndVars[2] = 0;

99 numIndVars[3] = 0;

100 numIndVars[4] = 0;

101

102 matID[0] = 2140;

103 matID[1] = 2140;

104 matID[2] = 12140;

105 matID[3] = 2140;

106 matID[4] = 2140;

107

108 errorCode = EOS_OK;

109 for (i = 0; i < nTables; i++) {

110 tableHandle[i] = 0;

111 }

112

113 /*

114 * initialize table data objects

115 */

116

117 eos_CreateTables (&nTables, tableType, matID, tableHandle, &errorCode);

118 if (errorCode != EOS_OK) {

119 for (i = 0; i < nTables; i++) {

120 tableHandleErrorCode = EOS_OK;

121 eos_GetErrorCode (&tableHandle[i], &tableHandleErrorCode);

122 eos_GetErrorMessage (&tableHandleErrorCode, errorMessage);

123 printf ("eos_CreateTables ERROR %i: %s\n", tableHandleErrorCode,

124 errorMessage);

125 }

126 }

127

128 /*

129 * set some options

130 */

1. C HOST CODE EXAMPLE 91

131

132 for (i = 0; i < nTables; i++) {

133 /* enable smoothing */

134 eos_SetOption (&tableHandle[i], &EOS_SMOOTH, EOS_NullPtr, &errorCode);

135 if (errorCode != EOS_OK) {

136 eos_GetErrorMessage (&errorCode, errorMessage);

137 printf ("eos_SetOption ERROR %i: %s\n", errorCode, errorMessage);

138 }

139 }

140

141 /*

142 * load data into table data objects

143 */

144

145 eos_LoadTables (&nTables, tableHandle, &errorCode);

146 if (errorCode != EOS_OK) {

147 eos_GetErrorMessage (&errorCode, errorMessage);

148 printf ("eos_LoadTables ERROR %i: %s\n", errorCode, errorMessage);

149 for (i = 0; i < nTables; i++) {

150 tableHandleErrorCode = EOS_OK;

151 eos_GetErrorCode (&tableHandle[i], &tableHandleErrorCode);

152 eos_GetErrorMessage (&tableHandleErrorCode, errorMessage);

153 printf ("eos_LoadTables ERROR %i (TH=%i): %s\n", tableHandleErrorCode,

154 tableHandle[i], errorMessage);

155 }

156 }

157

158 /*

159 * interpolate -- errors codes are intentionally produced

160 */

161 X[0] = 3000.;

162 X[1] = 6000.;

163 X[2] = 8200.;

164 X[3] = 8300.;

165

166 Y[0] = 20000.0;

167 Y[1] = 620000.0;

168 Y[2] = 4000000.0;

92 CHAPTER 10. USAGE EXAMPLES

169 Y[3] = 200000000.0;

170

171 for (i = 0; i < nTables; i++) {

172 printf ("\n--- Interpolate using tableType %s ---\n", tableTypeLabel[i]);

173 eos_Interpolate (&tableHandle[i], &nXYPairs, X, Y, F, dFx, dFy,

174 &errorCode);

175 printf ("%s Interpolation Results:\n", tableTypeLabel[i]);

176 if (errorCode != EOS_OK) {

177 eos_GetErrorMessage (&errorCode, errorMessage);

178 printf ("eos_Interpolate ERROR %i (TH=%i): %s\n", errorCode,

179 tableHandle[i], errorMessage);

180 }

181 else {

182 for (j = 0; j < nXYPairs; j++) {

183 if (numIndVars[i] == 1)

184 printf ("\ti=%i\tX = %e, F = %e, dFx = %e, errorCode: %d\n",

185 j, X[j], F[j], dFx[j], errorCode);

186 if (numIndVars[i] == 2)

187 printf

188 ("\ti=%i\tX = %e, Y = %e, F = %e, dFx = %e, dFy = %e, errorCode: %d\n",

189 j, X[j], Y[j], F[j], dFx[j], dFy[j], errorCode);

190 }

191 }

192 }

193

194 /*

195 * retrieve table info -- errors codes are intentionally produced

196 */

197

198 for (i = 0; i < nTables; i++) {

199 printf ("\n--- Table information for tableType %s , tableHandle=%i ---\n",

200 tableTypeLabel[i], tableHandle[i]);

201 for (j = 0; j < nInfoItems; j++) {

202 EOS_BOOLEAN equal;

203 eos_GetTableInfo (&(tableHandle[i]), &one, &(infoItems[j]),

204 &(infoVals[j]), &errorCode);

205 eos_ErrorCodesEqual((EOS_INTEGER*)&EOS_INVALID_INFO_FLAG, &errorCode, &equal);

206 if (errorCode == EOS_OK) {

2. C++ HOST CODE EXAMPLE 93

207 printf ("%2i. %-82s: %13.6f\n", j + 1, infoItemDescriptions[j],

208 infoVals[j]);

209 }

210 else if (! equal) {

211 /* Ignore EOS_INVALID_INFO_FLAG since not all infoItems are currently

212 applicable to a specific tableHandle. */

213 eos_GetErrorMessage (&errorCode, errorMessage);

214 printf ("eos_GetTableInfo ERROR %i: %s\n", errorCode, errorMessage);

215 }

216 }

217 }

218

219 /*

220 * Destroy all data objects

221 */

222

223 eos_DestroyAll (&errorCode);

224 if (errorCode != EOS_OK) {

225 for (i = 0; i < nTables; i++) {

226 tableHandleErrorCode = EOS_OK;

227 eos_GetErrorCode (&tableHandle[i], &tableHandleErrorCode);

228 eos_GetErrorMessage (&tableHandleErrorCode, errorMessage);

229 printf ("eos_DestroyAll ERROR %i: %s\n", tableHandleErrorCode,

230 errorMessage);

231 }

232 }

233

234 return 0;

235

236 }

2 C++ HOST CODE EXAMPLE

1 /***

2 * Example Program

3 * ---

94 CHAPTER 10. USAGE EXAMPLES

4 * Filetype: (SOURCE)

5 *

6 * Copyright -- see file named COPYRIGHTNOTICE

7 *

8 **/

9

10 /*! \file

11 * \ingroup examples

12 * \brief This is a simple C++ example of how to use EOSPAC6 interface.

13 */

14

15 #include <iostream>

16 #include <iomanip>

17 #include "eos_Interface.h"

18

19 using namespace std;

20

21 int main ()

22 {

23

24 const EOS_INTEGER nTablesE = 5;

25 const EOS_INTEGER nXYPairsE = 4;

26 const EOS_INTEGER nInfoItemsE = 12;

27

28 EOS_INTEGER i, j;

29 EOS_REAL X[nXYPairsE], Y[nXYPairsE], F[nXYPairsE], dFx[nXYPairsE],

30 dFy[nXYPairsE];

31 EOS_INTEGER tableType[nTablesE], numIndVars[nTablesE];

32 EOS_INTEGER matID[nTablesE];

33 EOS_INTEGER tableHandle[nTablesE];

34 EOS_INTEGER errorCode;

35 EOS_INTEGER tableHandleErrorCode;

36 EOS_INTEGER nTables;

37 EOS_INTEGER nXYPairs;

38 EOS_REAL infoVals[nInfoItemsE];

39 EOS_INTEGER nInfoItems;

40 EOS_INTEGER infoItems[nInfoItemsE] = {

41 EOS_Cmnt_Len,

2. C++ HOST CODE EXAMPLE 95

42 EOS_Exchange_Coeff,

43 EOS_F_Convert_Factor,

44 EOS_Log_Val,

45 EOS_Material_ID,

46 EOS_Mean_Atomic_Mass,

47 EOS_Mean_Atomic_Num,

48 EOS_Modulus,

49 EOS_Normal_Density,

50 EOS_Table_Type,

51 EOS_X_Convert_Factor,

52 EOS_Y_Convert_Factor

53 };

54 const EOS_CHAR *infoItemDescriptions[nInfoItemsE] = {

55 "The length in characters of the comments available for the specified data table",

56 "The exchange coefficient",

57 "The conversion factor corresponding to the dependent variable, F(x,y)",

58 "Non-zero if the data table is in a log10 format",

59 "The SESAME material identification number",

60 "The mean atomic mass",

61 "The mean atomic number",

62 "The solid bulk modulus",

63 "The normal density",

64 "The type of data table. Corresponds to the parameters in APPENDIX B and APPENDIX C",

65 "The conversion factor corresponding to the primary independent variable, x",

66 "The conversion factor corresponding to the secondary independent variable, y"

67 };

68 const EOS_CHAR *tableTypeLabel[nTablesE] = {

69 "EOS_Pt_DT",

70 "EOS_Dv_T",

71 "EOS_Ogb",

72 "EOS_Comment",

73 "EOS_Info"

74 };

75 EOS_CHAR errorMessage[EOS_MaxErrMsgLen];

76

77 EOS_INTEGER one = 1;

78

79 nTables = nTablesE;

96 CHAPTER 10. USAGE EXAMPLES

80 nXYPairs = nXYPairsE;

81 nInfoItems = nInfoItemsE;

82

83 /*

84 * EOS_Pt_DT, material 2140 works for Sesame table 301 (record type 1)

85 * EOS_Dv_T, material 2140 works for Sesame table 401 (record type 2)

86 * EOS_Ogb, material 12140 works for Sesame table 501 (record type 3)

87 * EOS_Comment, material 2140 works for Sesame tables 101-199 (record type 4)

88 * EOS_Info, material 2140 works for Sesame table 201 (record type 5)

89 */

90 tableType[0] = EOS_Pt_DT;

91 tableType[1] = EOS_Dv_T;

92 tableType[2] = EOS_Ogb;

93 tableType[3] = EOS_Comment;

94 tableType[4] = EOS_Info;

95

96 numIndVars[0] = 2;

97 numIndVars[1] = 1;

98 numIndVars[2] = 0;

99 numIndVars[3] = 0;

100 numIndVars[4] = 0;

101

102 matID[0] = 2140;

103 matID[1] = 2140;

104 matID[2] = 12140;

105 matID[3] = 2140;

106 matID[4] = 2140;

107

108 errorCode = EOS_OK;

109 for (i = 0; i < nTables; i++) {

110 tableHandle[i] = 0;

111 }

112

113 /*

114 * initialize table data objects

115 */

116

117 eos_CreateTables (&nTables, tableType, matID, tableHandle, &errorCode);

2. C++ HOST CODE EXAMPLE 97

118 if (errorCode != EOS_OK) {

119 for (i = 0; i < nTables; i++) {

120 tableHandleErrorCode = EOS_OK;

121 eos_GetErrorCode (&tableHandle[i], &tableHandleErrorCode);

122 eos_GetErrorMessage (&tableHandleErrorCode, errorMessage);

123 cout << "eos_CreateTables ERROR " << tableHandleErrorCode

124 << ": " << errorMessage << ’\n’;

125 }

126 }

127

128 /*

129 * set some options

130 */

131

132 for (i = 0; i < nTables; i++) {

133 /* enable smoothing */

134 eos_SetOption (&tableHandle[i], &EOS_SMOOTH, EOS_NullPtr, &errorCode);

135 if (errorCode != EOS_OK) {

136 eos_GetErrorMessage (&errorCode, errorMessage);

137 cout << "eos_SetOption ERROR " << errorCode << ": " << errorMessage << ’\n’;

138 }

139 }

140

141 /*

142 * load data into table data objects

143 */

144

145 eos_LoadTables (&nTables, tableHandle, &errorCode);

146 if (errorCode != EOS_OK) {

147 eos_GetErrorMessage (&errorCode, errorMessage);

148 cout << "eos_LoadTables ERROR " << errorCode << ": " << errorMessage << ’\n’;

149 for (i = 0; i < nTables; i++) {

150 tableHandleErrorCode = EOS_OK;

151 eos_GetErrorCode (&tableHandle[i], &tableHandleErrorCode);

152 eos_GetErrorMessage (&tableHandleErrorCode, errorMessage);

153 cout << "eos_LoadTables ERROR " << tableHandleErrorCode << "(TH="

154 << tableHandle[i] << "): " << errorMessage << ’\n’;

155 }

98 CHAPTER 10. USAGE EXAMPLES

156 }

157

158 /*

159 * interpolate -- errors codes are intentionally produced

160 */

161 X[0] = 3000.;

162 X[1] = 6000.;

163 X[2] = 8200.;

164 X[3] = 8300.;

165

166 Y[0] = 20000.0;

167 Y[1] = 620000.0;

168 Y[2] = 4000000.0;

169 Y[3] = 200000000.0;

170

171 for (i = 0; i < nTables; i++) {

172 cout << "\n--- Interpolate using tableType " << tableTypeLabel[i] << " ---\n";

173 eos_Interpolate (&tableHandle[i], &nXYPairs, X, Y, F, dFx, dFy,

174 &errorCode);

175 cout << tableTypeLabel[i] << " Interpolation Results:\n";

176 if (errorCode != EOS_OK) {

177 eos_GetErrorMessage (&errorCode, errorMessage);

178 cout << "eos_Interpolate ERROR " << errorCode << "(TH="

179 << tableHandle[i] << "): " << errorMessage << ’\n’;

180 }

181 else {

182 for (j = 0; j < nXYPairs; j++) {

183 if (numIndVars[i] == 1)

184 cout << "\ti=" << j

185 << "\tX = " << scientific << X[j]

186 << ", F = " << scientific << F[j]

187 << ", dFx = " << scientific << dFx[j]

188 << ", errorCode: " << errorCode << ’\n’;

189 if (numIndVars[i] == 2)

190 cout << "\ti=" << j

191 << "\tX = " << scientific << X[j]

192 << ", Y = " << scientific << Y[j]

193 << ", F = " << scientific << F[j]

2. C++ HOST CODE EXAMPLE 99

194 << ", dFx = " << scientific << dFx[j]

195 << ", dFy = " << scientific << dFy[j]

196 << ", errorCode: " << errorCode << ’\n’;

197 }

198 }

199 }

200

201 /*

202 * retrieve table info -- errors codes are intentionally produced

203 */

204

205 for (i = 0; i < nTables; i++) {

206 cout << "\n--- Table information for tableType " << tableTypeLabel[i]

207 << " , tableHandle=" << tableHandle[i]

208 << " ---\n";

209 for (j = 0; j < nInfoItems; j++) {

210 EOS_BOOLEAN equal;

211 eos_GetTableInfo (&(tableHandle[i]), &one, &(infoItems[j]),

212 &(infoVals[j]), &errorCode);

213 eos_ErrorCodesEqual((EOS_INTEGER*)&EOS_INVALID_INFO_FLAG, &errorCode, &equal);

214 if (errorCode == EOS_OK) {

215 cout.setf(ios::fixed,ios::floatfield);

216 cout << setprecision(2) << setiosflags(ios::fixed)

217 << setw(2) << right << j + 1 << ". "

218 << setw(82) << left << infoItemDescriptions[j] << ": "

219 << setprecision(6) << setiosflags(ios::fixed)

220 << setw(13) << right << infoVals[j] << ’\n’;

221 }

222 else if (! equal) {

223 /* Ignore EOS_INVALID_INFO_FLAG since not all infoItems are currently

224 applicable to a specific tableHandle. */

225 eos_GetErrorMessage (&errorCode, errorMessage);

226 cout << "eos_GetTableInfo ERROR " << errorCode

227 << ": " << errorMessage << ’\n’;

228 }

229 }

230 }

231

100 CHAPTER 10. USAGE EXAMPLES

232 /*

233 * Destroy all data objects

234 */

235

236 eos_DestroyAll (&errorCode);

237 if (errorCode != EOS_OK) {

238 for (i = 0; i < nTables; i++) {

239 tableHandleErrorCode = EOS_OK;

240 eos_GetErrorCode (&tableHandle[i], &tableHandleErrorCode);

241 eos_GetErrorMessage (&tableHandleErrorCode, errorMessage);

242 cout << "eos_DestroyAll ERROR " << tableHandleErrorCode

243 << ": " << errorMessage << ’\n’;

244 }

245 }

246

247 return 0;

248

249 }

3 FORTRAN 77 HOST CODE EXAMPLE

1 c***

2 c Example F77 Program

3 c ---

4 c Filetype: (SOURCE)

5 c

6 c Copyright -- see file named COPYRIGHTNOTICE

7 c

8 c***

9

10 c> \file

11 c> \ingroup examples

12 c> \brief This is a simple F77 example of how to use EOSPAC6 interface.

13

14 program TestF77

15

3. FORTRAN 77 HOST CODE EXAMPLE 101

16 implicit none

17

18 include ’eos_Interface.fi’

19

20 integer*4 nTables, nXYPairs, nInfoItems

21 parameter (nTables = 5)

22 parameter (nXYPairs = 4)

23 parameter (nInfoItems = 12)

24

25 integer*4 i, j

26 real*8 X(nXYPairs), Y(nXYPairs), F(nXYPairs), dFx(nXYPairs),

27 & dFy(nXYPairs)

28 integer*4 tableType(nTables), numIndVars(nTables)

29 integer*4 matID(nTables)

30 integer*4 tableHandle(nTables)

31 integer*4 errorCode

32 integer*4 tableHandleErrorCode

33 real*8 infoVals(nInfoItems)

34 integer*4 infoItems(nInfoItems)

35 character*82 infoItemDescriptions(nInfoItems)

36 character*20 tableTypeLabel(nTables)

37 character*(EOS_MaxErrMsgLen) errorMessage

38 integer k

39

40 data infoItems /

41 & EOS_Cmnt_Len,

42 & EOS_Exchange_Coeff,

43 & EOS_F_Convert_Factor,

44 & EOS_Log_Val,

45 & EOS_Material_ID,

46 & EOS_Mean_Atomic_Mass,

47 & EOS_Mean_Atomic_Num,

48 & EOS_Modulus,

49 & EOS_Normal_Density,

50 & EOS_Table_Type,

51 & EOS_X_Convert_Factor,

52 & EOS_Y_Convert_Factor

53 & /

102 CHAPTER 10. USAGE EXAMPLES

54 data infoItemDescriptions /

55 &’The length in characters of the comments available for the specif

56 &ied data table’,

57 &’The exchange coefficient’,

58 &’The conversion factor corresponding to the dependent variable, F(

59 &x,y)’,

60 &’Non-zero if the data table is in a log10 format’,

61 &’The SESAME material identification number’,

62 &’The mean atomic mass’,

63 &’The mean atomic number’,

64 &’The solid bulk modulus’,

65 &’The normal density’,

66 &’The type of data table. Corresponds to the parameters in APPENDIX

67 & B and APPENDIX C’,

68 &’The conversion factor corresponding to the primary independent va

69 &riable, x’,

70 &’The conversion factor corresponding to the secondary independent

71 &variable, y’

72 &/

73 data tableTypeLabel /

74 & ’EOS_Pt_DT’,

75 & ’EOS_Dv_T’,

76 & ’EOS_Ogb’,

77 & ’EOS_Comment’,

78 & ’EOS_Info’

79 & /

80

81 logical equal

82

83 c EOS_Pt_DT, material 2140 works for Sesame table 301 (record type 1)

84 c EOS_Dv_T, material 2140 works for Sesame table 401 (record type 2)

85 c EOS_Ogb, material 12140 works for Sesame table 501 (record type 3)

86 c EOS_Comment, material 2140 works for Sesame tables 101-199 (record type 4)

87 c EOS_Info, material 2140 works for Sesame table 201 (record type 5)

88 tableType(1) = EOS_Pt_DT

89 tableType(2) = EOS_Dv_T

90 tableType(3) = EOS_Ogb

91 tableType(4) = EOS_Comment

3. FORTRAN 77 HOST CODE EXAMPLE 103

92 tableType(5) = EOS_Info

93

94 numIndVars(1) = 2

95 numIndVars(2) = 1

96 numIndVars(3) = 0

97 numIndVars(4) = 0

98 numIndVars(5) = 0

99

100 matID(1) = 2140

101 matID(2) = 2140

102 matID(3) = 12140

103 matID(4) = 2140

104 matID(5) = 2140

105

106 errorCode = EOS_OK

107 do 10 i=1, nTables

108 tableHandle(i) = 0

109 10 continue

110

111 c

112 c initialize table data objects

113 c

114 call eos_CreateTables (nTables, tableType, matID,

115 & tableHandle, errorCode)

116 if (errorCode.NE.EOS_OK) then

117 do 15 i=1, nTables

118 tableHandleErrorCode = EOS_OK

119 call eos_GetErrorCode

120 & (tableHandle(i), tableHandleErrorCode)

121 call eos_GetErrorMessage

122 & (tableHandleErrorCode, errorMessage)

123 call strLength(errorMessage, EOS_MaxErrMsgLen, k)

124 write(*,998) ’eos_CreateTables ERROR ’,tableHandleErrorCode,

125 & ’: ’,errorMessage(1:k)

126 15 continue

127 endif

128

129 c

104 CHAPTER 10. USAGE EXAMPLES

130 c set some options

131 c

132 do 20 i=1, nTables

133 c enable smoothing

134 call eos_SetOption (tableHandle(i), EOS_SMOOTH,

135 & EOS_NullVal, errorCode)

136 if (errorCode.NE.EOS_OK) then

137 call eos_GetErrorMessage (errorCode, errorMessage)

138 call strLength(errorMessage, EOS_MaxErrMsgLen, k)

139 write(*,998) ’eos_SetOption ERROR ’, errorCode,

140 & ’: ’, errorMessage(1:k)

141 endif

142 20 continue

143

144 c

145 c load data into table data objects

146 c

147 call eos_LoadTables (nTables, tableHandle, errorCode)

148 if (errorCode.NE.EOS_OK) then

149 call eos_GetErrorMessage (errorCode, errorMessage)

150 call strLength(errorMessage, EOS_MaxErrMsgLen, k)

151 write(*,998) ’eos_LoadTables ERROR ’, errorCode, ’: ’,

152 & errorMessage(1:k)

153 do 25 i=1, nTables

154 tableHandleErrorCode = EOS_OK

155 call eos_GetErrorCode

156 & (tableHandle(i), tableHandleErrorCode)

157 call eos_GetErrorMessage

158 & (tableHandleErrorCode, errorMessage)

159 call strLength(errorMessage, EOS_MaxErrMsgLen, k)

160 write(*,994) ’eos_LoadTables ERROR ’, tableHandleErrorCode,

161 & ’ (TH=’, tableHandle(i), ’): ’,

162 & errorMessage(1:k)

163 25 continue

164 endif

165

166 c

167 c interpolate -- errors codes are intentionally produced

3. FORTRAN 77 HOST CODE EXAMPLE 105

168 c

169 X(1) = 3000.d0

170 X(2) = 6000.d0

171 X(3) = 8200.d0

172 X(4) = 8300.d0

173

174 Y(1) = 20000.0d0

175 Y(2) = 620000.0d0

176 Y(3) = 4000000.0d0

177 Y(4) = 200000000.0d0

178

179 do 30 i=1, nTables

180 write(*,*) ’ ’

181 write(*,997) ’--- Interpolate using tableType ’,

182 & tableTypeLabel(i),’ ---’

183 call eos_Interpolate (tableHandle(i), nXYPairs, X, Y, F,

184 & dFx, dFy, errorCode)

185 write(*,997) tableTypeLabel(i), ’ Interpolation Results:’

186 if (errorCode.NE.EOS_OK) then

187 call eos_GetErrorMessage (errorCode, errorMessage)

188 call strLength(errorMessage, EOS_MaxErrMsgLen, k)

189 write(*,994) ’eos_Interpolate ERROR ’, errorCode,

190 & ’ (TH=’, tableHandle(i), ’): ’,

191 & errorMessage(1:k)

192 else

193 do 40 j=1, nXYPairs

194 if (numIndVars(i).EQ.1) then

195 write(*,996) j-1,X(j),F(j),dFx(j),errorCode

196 endif

197 if (numIndVars(i).EQ.2) then

198 write(*,999) j-1,X(j),Y(j),F(j),dFx(j),dFy(j),errorCode

199 endif

200 40 continue

201 endif

202 30 continue

203

204 c

205 c Retrieve all miscellaneous table info

106 CHAPTER 10. USAGE EXAMPLES

206 c

207 do 45 i=1, nTables

208 write(*,*) ’ ’

209 write(*,997) ’--- Table information for tableType ’,

210 & tableTypeLabel(i), ’, tableHandle=’, tableHandle(i),

211 & ’ ---’

212 do 50 j=1, nInfoItems

213 call eos_GetTableInfo (tableHandle(i), 1,

214 & infoItems(j), infoVals(j), errorCode)

215 call eos_ErrorCodesEqual(EOS_INVALID_INFO_FLAG, errorCode,

216 & equal)

217 if (errorCode.EQ.EOS_OK) then

218 write(*,995) j,’. ’,infoItemDescriptions(j), ’: ’,

219 & infoVals(j)

220 else if (.NOT.equal) then

221 c Ignore EOS_INVALID_INFO_FLAG since not all infoItems are currently

222 c applicable to a specific tableHandle.

223 call eos_GetErrorMessage (errorCode, errorMessage)

224 call strLength(errorMessage, EOS_MaxErrMsgLen, k)

225 write(*,998) ’eos_LoadTables ERROR ’, errorCode,

226 & ’: ’, errorMessage(1:k)

227 endif

228 50 continue

229 45 continue

230

231 c

232 c Destroy all data objects

233 c

234 call eos_DestroyAll (errorCode)

235 if (errorCode.NE.EOS_OK) then

236 do 35 i=1, nTables

237 tableHandleErrorCode = EOS_OK

238 call eos_GetErrorCode (

239 & tableHandle(i), tableHandleErrorCode)

240 call eos_GetErrorMessage (

241 & tableHandleErrorCode, errorMessage)

242 call strLength(errorMessage, EOS_MaxErrMsgLen, k)

243 write(*,998) ’eos_DestroyAll ERROR ’, tableHandleErrorCode,

4. FORTRAN 90 HOST CODE EXAMPLE 107

244 & ’: ’, errorMessage(1:k)

245 35 continue

246 endif

247

248 994 format (a,i5,a,i1,2a)

249 995 format (i2,a,a,a,f13.6)

250 996 format (’ i=’,i2,’ X =’,1pe13.6,

251 & ’, F =’,1pe13.6,’, dFx =’,1pe13.6,’, errorCode: ’,i5)

252 997 format (a,:,a,:,2(a,:,i2))

253 998 format (a,i5,2a)

254 999 format (’ i=’,i2,’ X =’,1pe13.6,’, Y =’,1pe13.6,

255 & ’, F =’,1pe13.6,’, dFx =’,1pe13.6,’, dFy =’,

256 & 1pe13.6,’, errorCode: ’,i5)

257

258 end

259

260 subroutine strLength(str, length, trimmedLength)

261 integer i, length, trimmedLength

262 character*(*) str

263 trimmedLength = 0

264 do 5 i=length, 1, -1

265 if (trimmedLength.EQ.0 .AND. str(i:i).NE.’ ’ .AND.

266 & str(i:i).NE.char(0)) then

267 trimmedLength = i

268 endif

269 5 continue

270 end

4 FORTRAN 90 HOST CODE EXAMPLE

1 !***

2 ! Example F90 program

3 ! --

4 ! Filetype: (HEADER)

5 !

6 ! Copyright -- see file named COPYRIGHTNOTICE

108 CHAPTER 10. USAGE EXAMPLES

7 !

8 !**

9

10 !> @file

11 !! @ingroup examples

12 !! @brief This is a simple F90 example of how to use EOSPAC6 interface.

13

14 program TestF90

15

16 use eos_Interface

17

18 implicit none

19

20 integer(EOS_INTEGER),parameter :: nTables = 5

21 integer(EOS_INTEGER),parameter :: nXYPairs = 4

22 integer(EOS_INTEGER),parameter :: nInfoItems = 12

23

24 integer(EOS_INTEGER) :: i, j

25 real(EOS_REAL) :: X(nXYPairs), Y(nXYPairs), F(nXYPairs), dFx(nXYPairs), dFy(nXYPairs)

26 integer(EOS_INTEGER) :: tableType(nTables), numIndVars(nTables)

27 integer(EOS_INTEGER) :: matID(nTables)

28 integer(EOS_INTEGER) :: tableHandle(nTables)

29 integer(EOS_INTEGER) :: errorCode

30 integer(EOS_INTEGER) :: tableHandleErrorCode

31 real(EOS_REAL) :: infoVals(nInfoItems)

32 integer(EOS_INTEGER) :: infoItems(nInfoItems) = (/ &

33 EOS_Cmnt_Len, &

34 EOS_Exchange_Coeff, &

35 EOS_F_Convert_Factor, &

36 EOS_Log_Val, &

37 EOS_Material_ID, &

38 EOS_Mean_Atomic_Mass, &

39 EOS_Mean_Atomic_Num, &

40 EOS_Modulus, &

41 EOS_Normal_Density, &

42 EOS_Table_Type, &

43 EOS_X_Convert_Factor, &

44 EOS_Y_Convert_Factor &

4. FORTRAN 90 HOST CODE EXAMPLE 109

45 /)

46 character(82) :: infoItemDescriptions(nInfoItems) = (/ &

47 ’The length in characters of the comments available for the specified data table ’, &

48 ’The exchange coefficient ’, &

49 ’The conversion factor corresponding to the dependent variable, F(x,y) ’, &

50 ’Non-zero if the data table is in a log10 format ’, &

51 ’The SESAME material identification number ’, &

52 ’The mean atomic mass ’, &

53 ’The mean atomic number ’, &

54 ’The solid bulk modulus ’, &

55 ’The normal density ’, &

56 ’The type of data table. Corresponds to the parameters in APPENDIX B and APPENDIX C’, &

57 ’The conversion factor corresponding to the primary independent variable, x ’, &

58 ’The conversion factor corresponding to the secondary independent variable, y ’ &

59 /)

60 character(11) :: tableTypeLabel(nTables) = (/ &

61 ’EOS_Pt_DT ’, &

62 ’EOS_Dv_T ’, &

63 ’EOS_Ogb ’, &

64 ’EOS_Comment’, &

65 ’EOS_Info ’ &

66 /)

67 character(EOS_MaxErrMsgLen) :: errorMessage

68

69 logical equal

70

71 ! EOS_Pt_DT, material 2140 works for Sesame table 301 (record type 1)

72 ! EOS_Dv_T, material 2140 works for Sesame table 401 (record type 2)

73 ! EOS_Ogb, material 12140 works for Sesame table 501 (record type 3)

74 ! EOS_Comment, material 2140 works for Sesame tables 101-199 (record type 4)

75 ! EOS_Info, material 2140 works for Sesame table 201 (record type 5)

76 tableType(1) = EOS_Pt_DT

77 tableType(2) = EOS_Dv_T

78 tableType(3) = EOS_Ogb

79 tableType(4) = EOS_Comment

80 tableType(5) = EOS_Info

81

82 numIndVars(1) = 2

110 CHAPTER 10. USAGE EXAMPLES

83 numIndVars(2) = 1

84 numIndVars(3) = 0

85 numIndVars(4) = 0

86 numIndVars(5) = 0

87

88 matID(1) = 2140

89 matID(2) = 2140

90 matID(3) = 12140

91 matID(4) = 2140

92 matID(5) = 2140

93

94 errorCode = EOS_OK

95 do i=1, nTables

96 tableHandle(i) = 0

97 enddo

98

99 !

100 ! initialize table data objects

101 !

102 call eos_CreateTables (nTables, tableType, matID, tableHandle, errorCode)

103 if (errorCode.NE.EOS_OK) then

104 do i=1, nTables

105 tableHandleErrorCode = EOS_OK

106 call eos_GetErrorCode (tableHandle(i), tableHandleErrorCode)

107 call eos_GetErrorMessage (tableHandleErrorCode, errorMessage)

108 write(*,998) ’eos_CreateTables ERROR ’, tableHandleErrorCode, ’: ’, &

109 errorMessage(1:(len_trim(errorMessage)-1))

110 enddo

111 endif

112

113 !

114 ! set some options

115 !

116 do i=1, nTables

117 ! enable smoothing

118 call eos_SetOption (tableHandle(i), EOS_SMOOTH, EOS_NullVal, errorCode)

119 if (errorCode.NE.EOS_OK) then

120 call eos_GetErrorMessage (errorCode, errorMessage)

4. FORTRAN 90 HOST CODE EXAMPLE 111

121 write(*,998) ’eos_SetOption ERROR ’, errorCode, ’: ’, &

122 errorMessage(1:(len_trim(errorMessage)-1))

123 endif

124 enddo

125

126 !

127 ! load data into table data objects

128 !

129 call eos_LoadTables (nTables, tableHandle, errorCode)

130 if (errorCode.NE.EOS_OK) then

131 call eos_GetErrorMessage (errorCode, errorMessage)

132 write(*,998) ’eos_LoadTables ERROR ’, errorCode, ’: ’, &

133 errorMessage(1:(len_trim(errorMessage)-1))

134 do i=1, nTables

135 tableHandleErrorCode = EOS_OK

136 call eos_GetErrorCode (tableHandle(i), tableHandleErrorCode)

137 call eos_GetErrorMessage (tableHandleErrorCode, errorMessage)

138 write(*,994) ’eos_LoadTables ERROR ’, tableHandleErrorCode, ’ (TH=’, &

139 tableHandle(i), ’): ’, &

140 errorMessage(1:(len_trim(errorMessage)-1))

141 enddo

142 endif

143

144 !

145 ! interpolate -- errors codes are intentionally produced

146 !

147 X(1) = 3000._EOS_REAL

148 X(2) = 6000._EOS_REAL

149 X(3) = 8200._EOS_REAL

150 X(4) = 8300._EOS_REAL

151

152 Y(1) = 20000.0_EOS_REAL

153 Y(2) = 620000.0_EOS_REAL

154 Y(3) = 4000000.0_EOS_REAL

155 Y(4) = 200000000.0_EOS_REAL

156

157 do i=1, nTables

158 write(*,*) ’ ’

112 CHAPTER 10. USAGE EXAMPLES

159 write(*,997) ’--- Interpolate using tableType ’, tableTypeLabel(i),’ ---’

160 call eos_Interpolate (tableHandle(i), nXYPairs, X, Y, F, dFx, dFy, errorCode)

161 write(*,997) tableTypeLabel(i), ’ Interpolation Results:’

162 if (errorCode.NE.EOS_OK) then

163 call eos_GetErrorMessage (errorCode, errorMessage)

164 write(*,994) ’eos_Interpolate ERROR ’, errorCode, ’ (TH=’, &

165 tableHandle(i), ’): ’, &

166 errorMessage(1:(len_trim(errorMessage)-1))

167 else

168 do j=1, nXYPairs

169 if (numIndVars(i).EQ.1) then

170 write(*,996) j-1,X(j),F(j),dFx(j),errorCode

171 endif

172 if (numIndVars(i).EQ.2) then

173 write(*,999) j-1,X(j),Y(j),F(j),dFx(j),dFy(j),errorCode

174 endif

175 enddo

176 endif

177 enddo

178

179 !

180 ! Retrieve all miscellaneous table info

181 !

182 do i=1, nTables

183 write(*,*) ’ ’

184 write(*,997) ’--- Table information for tableType ’, tableTypeLabel(i), &

185 ’, tableHandle=’, tableHandle(i), ’ ---’

186 do j=1, nInfoItems

187 call eos_GetTableInfo (tableHandle(i), 1_EOS_INTEGER, infoItems(j), &

188 infoVals(j), errorCode)

189 call eos_ErrorCodesEqual(EOS_INVALID_INFO_FLAG, errorCode, equal)

190 if (errorCode.EQ.EOS_OK) then

191 write(*,995) j,’. ’,infoItemDescriptions(j), ’: ’, infoVals(j)

192 else if (.NOT.equal) then

193 ! Ignore EOS_INVALID_INFO_FLAG since not all infoItems are currently

194 ! applicable to a specific tableHandle.

195 call eos_GetErrorMessage (errorCode, errorMessage)

196 write(*,998) ’eos_GetTableInfo ERROR ’, errorCode, ’: ’, &

4. FORTRAN 90 HOST CODE EXAMPLE 113

197 errorMessage(1:(len_trim(errorMessage)-1))

198 endif

199 enddo

200 enddo

201

202 !

203 ! Destroy all data objects

204 !

205 call eos_DestroyAll (errorCode)

206 if (errorCode.NE.EOS_OK) then

207 do i=1, nTables

208 tableHandleErrorCode = EOS_OK

209 call eos_GetErrorCode (tableHandle(i), tableHandleErrorCode)

210 call eos_GetErrorMessage (tableHandleErrorCode, errorMessage)

211 write(*,998) ’eos_DestroyAll ERROR ’, tableHandleErrorCode, ’: ’, &

212 errorMessage(1:(len_trim(errorMessage)-1))

213 enddo

214 endif

215

216 994 format (a,i5,a,i1,2a)

217 995 format (i2,a,a,a,f13.6)

218 996 format (’ i=’,i2,’ X =’,1pe13.6, &

219 ’, F =’,1pe13.6,’, dFx =’,1pe13.6,’, errorCode: ’,i5)

220 997 format (a,:,a,:,2(a,:,i2))

221 998 format (a,i5,2a)

222 999 format (’ i=’,i2,’ X =’,1pe13.6,’, Y =’,1pe13.6, &

223 ’, F =’,1pe13.6,’, dFx =’,1pe13.6,’, dFy =’, &

224 1pe13.6,’, errorCode: ’,i5)

225

226 end program TestF90

114 CHAPTER 10. USAGE EXAMPLES

11 TECHNICAL SUPPORT

INFORMATION

We’ve stepped in a pile of should.

– Anonymous

Online documentation and references related to EOSPAC are provided at the following URL on

both the open and secure networks:

https://xweb.lanl.gov/projects/data/eos/

If you find that you are in need of technical support, bug reports and feature requests for EOSPAC

version 6 can be obtained or submitted by contacting the Data Team via the EOSPAC version 6

mailing list, which is available on both the open and secure networks:

eospac-help@lanl.gov

The developer(s) responsible for the EOSPAC code base are listed as follows:

David A. Pimentel Ginger A. Young

Los Alamos National Laboratory Los Alamos National Laboratory

MS F663 MS B295

WRS-SNA, TA-03-1400, Rm. 4116 HPC-ENV, TA-03-1400, Rm. 4210

Los Alamos, New Mexico 87545 Los Alamos, New Mexico 87545

davidp@lanl.gov gingery@lanl.gov

(505) 665-1255 (505) 667-5133

115

https://xweb.lanl.gov/projects/data/eos/
mailto:eospac-help@lanl.gov
mailto:davidp@lanl.gov
mailto:gingery@lanl.gov

116 CHAPTER 11. TECHNICAL SUPPORT INFORMATION

12 ACKNOWLEDGEMENTS

Knowledge is in the end based on acknowledgement.

– Ludwig Wittgenstein

• Bill Archer, formerly of LANL CCN-12, deserves many thanks for his large contributions to

the initial planning and documentation of the EOSPAC 6 development project.

• Olga Chotinun, formerly of LANL HPC-1, was instrumental in the development of the software

package.

• Angela Herring, formerly of LANL X-1-NAD, contributed many significant fixes and enhance-

ments, and she deserves many thanks.

• Ben Mastripolito, LANL XCP-5, contributed many significant fixes and enhancements, and

he deserves many thanks.

• Anna Pietarila Graham, LANL HPC-ENV, contributed many significant fixes and enhance-

ments, and she deserves many thanks.

• Daniel Sheppard, LANL XCP-5, has provided advice concerning content of this document

and various features in EOSPAC 6 and associated tools.

• Ginger Young, LANL HPC-ENV, has provided advice concerning content of this document

and various features in EOSPAC 6 and associated tools.

117

118 CHAPTER 12. ACKNOWLEDGEMENTS

13 BIBLIOGRAPHY

If you steal from one author it’s plagiarism; if you steal from many it’s research.

– Wilson Mizner

119

120 BIBLIOGRAPHY

14 APPENDIX

*Appendix usually means “small outgrowth from large intestine,” but in this case

it means “additional information accompanying main text.” Or are those really the same

things? Think carefully before you insult this book.

– Pseudonymous Bosch, The Name of This Book Is Secret

121

122 CHAPTER 14. APPENDIX

A. TABLE TYPES: MNEMONIC CONVENTIONS 123

A TABLE TYPES: MNEMONIC CONVENTIONS

Below is an alphabetized list of mnemonics used to create the EOSPAC table type identifier names

that are defined in both APPENDICES B and C. These mnemonics are combined as follows to

create the aforementioned identifier names:

EOS # @$

where # is the mnemonic of the dependent function, F(x,y)

@ is the mnemonic of the primary independent variable, x

$ is the mnemonic of the secondary independent variable, y.

Mnemonic Description

Ac Specific-Helmholtz-Free-Energy Cold Curve

Ae Electron Specific-Helmholtz-Free-Energy

Af Freeze Specific-Helmholtz-Free-Energy

Aic Ion Specific-Helmholtz-Free-Energy plus Cold Curve Specific-Helmholtz-Free-Energy

Aiz Ion Specific-Helmholtz-Free-Energy Including Zero Point

Als Liquid or Solid Specific-Helmholtz-Free-Energy

Am Melt Specific-Helmholtz-Free-Energy

At Total Specific-Helmholtz-Free-Energy

Av Vapor Specific-Helmholtz-Free-Energy

B Thermoelectric Coefficient

Comment Descriptive Comments

D Density

Dls Liquid or Solid Density on coexistence line

Dv Vapor Density on coexistence line

Gc Specific-Gibbs-Free-Energy Cold Curve

Ge Electron Specific-Gibbs-Free-Energy

Gic Ion Specific-Gibbs-Free-Energy plus Cold Curve Specific-Gibbs-Free-Energy

Giz Ion Specific-Gibbs-Free-Energy Including Zero Point

Gs Shear Modulus

Gt Total Specific-Gibbs-Free-Energy

Info Atomic Number, Atomic Mass, Normal Density, Solid Bulk Modulus, Exchange Co-

efficient

Continued on next page

124 CHAPTER 14. APPENDIX

Mnemonic Description

Kc Electron Conductive Opacity (Conductivity Model)

Kec Electrical Conductivity

Keo Electron Conductive Opacity (Opacity Model)

Kp Planck Mean Opacity

Kr Rosseland Mean Opacity

Ktc Thermal Conductivity

M Mass fraction

NullTable null table

Ogb Calculated versus Interpolated Opacity Grid Boundary

Pc Pressure Cold Curve

Pe Electron Pressure

Pf Freeze Pressure

Pic Ion Pressure plus Cold Curve Pressure

Piz Ion Pressure Including Zero Point

Pm Melt Pressure

Pt Total Pressure

Pv Vapor Pressure

Se Electron Specific-Entropy

Sic Ion Specific-Entropy plus Cold Curve Specific-Entropy

Siz Ion Specific-Entropy Including Zero Specific-Entropy

St Total Specific-Entropy

T Temperature

Tf Freeze Temperature

Tm Melt Temperature

Uc Specific-Internal-Energy Cold Curve

Ue Electron Specific-Internal-Energy

Uf Freeze Specific-Internal-Energy

Uic Ion Specific-Internal-Energy plus Cold Curve Specific-Internal-Energy

Uiz Ion Specific-Internal-Energy Including Zero Point

Uls Liquid or Solid Specific-Internal-Energy

Um Melt Specific-Internal-Energy

Ut Total Specific-Internal-Energy

Uv Vapor Specific-Internal-Energy

Continued on next page

A. TABLE TYPES: MNEMONIC CONVENTIONS 125

Mnemonic Description

V Specific Volume

Zfc Mean Ion Charge (Conductivity Model)

Zfo Mean Ion Charge (Opacity Model)

126 CHAPTER 14. APPENDIX

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 127

B TABLE TYPES: GROUPED BY CATEGORY, SORTED

BY NAME

Below is a list of defined constants corresponding to the 236 data table types available within

EOSPAC. These defined constants have been grouped into several data categories, alphabetized

according to the defined constant names, and cross-referenced to the applicable EOSPAC 5[?],[?]

defined constants. The constant names have been created using the mnemonics defined in AP-

PENDIX A. The data categories are listed below and referenced to pages within this appendix.

It is important to note that the actual values of these constants may change without notice; there-

fore, use the constant names – do not hardwire the values into the host code. The EOSPAC 6

Constants are color coded as follows:

• I indicates the table is inverted with respect to the first independent variable.

• II indicates the table is inverted with respect to the second independent variable.

• M indicates the table is a combination of two other tables.

• GPU indicates the table may be offloaded to an available GPU and used for interpolation

within the appropriate GPU kernel(s). There are currently 142 data table types that are

compatible with the GPU interpolation kernel(s). The EOS INVERT AT SETUP option

must be enabled for the inverted data table types if they are to be interpolated on the GPU.

128 CHAPTER 14. APPENDIX

B.1 Category 1: Unrelated to SESAME data

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS NullTable null table n/a

Category 1: Unrelated to SESAME data

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 129

B.2 Category 2: General information found in SESAME’s 100- and

200-series tables

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Comment Descriptive Comments 101-199

EOS Info Atomic Number, Atomic Mass, Normal Density, Solid

Bulk Modulus, Exchange Coefficient

201

Category 2: General information found in SESAME’s 100- and 200-series tables

130 CHAPTER 14. APPENDIX

B.3 Category 3: Total EOS in SESAME’s 301 tables

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS At DGt

M GPU

Total Specific-Helmholtz-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Total Specific-Gibbs-Free-Energy

(MJ/kg)-dependent)

301

EOS At DPt

M GPU

Total Specific-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Total Pressure

(GPa)-dependent)

301

EOS At DSt

M GPU

Total Specific-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Total Specific-Entropy

(MJ/kg/K)-dependent)

301

EOS At DT

GPU

Total Specific-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Temperature (K)-dependent)

301

EOS At DUt

M GPU

Total Specific-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Total Specific-Internal-Energy

(MJ/kg)-dependent)

301

EOS D PtT

I

Density (Mg/m3)

(Total Pressure (GPa)- and Temperature (K)-dependent)

301

EOS Gt DAt

M GPU

Total Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Total

Specific-Helmholtz-Free-Energy (MJ/kg)-dependent)

301

EOS Gt DPt

M GPU

Total Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Total Pressure

(GPa)-dependent)

301

EOS Gt DSt

M GPU

Total Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Total Specific-Entropy

(MJ/kg/K)-dependent)

301

EOS Gt DT

GPU

Total Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Temperature (K)-dependent)

301

EOS Gt DUt

M GPU

Total Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Total Specific-Internal-Energy

(MJ/kg)-dependent)

301

Continued on next page

Category 3: Total EOS in SESAME’s 301 tables

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 131

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Pt DAt

M GPU

Total Pressure (GPa)

(Density (Mg/m3)- and Total Specific-Free-Energy

(MJ/kg)-dependent)

301

EOS Pt DGt

M GPU

Total Pressure (GPa)

(Density (Mg/m3)- and Total Specific-Gibbs-Free-Energy

(MJ/kg)-dependent)

301

EOS Pt DSt

M GPU

Total Pressure (GPa)

(Density (Mg/m3)- and Total Specific-Entropy

(MJ/kg/K)-dependent)

301

EOS Pt DT

GPU

Total Pressure (GPa)

(Density (Mg/m3)- and Temperature (K)-dependent)

301

EOS Pt DUt

M GPU

Total Pressure (GPa)

(Density (Mg/m3)- and Total Specific-Internal-Energy

(MJ/kg)-dependent)

301

EOS St DAt

M GPU

Total Specific-Entropy (MJ/kg/K)

(Density (Mg/m3)- and Total Specific-Free-Energy

(MJ/kg)-dependent)

301

EOS St DGt

M GPU

Total Specific-Entropy (MJ/kg/K)

(Density (Mg/m3)- and Total Specific-Gibbs-Free-Energy

(MJ/kg)-dependent)

301

EOS St DPt

M GPU

Total Specific-Entropy (MJ/kg/K)

(Density (Mg/m3)- and Total Pressure

(GPa)-dependent)

301

EOS St DT

GPU

Total Specific-Entropy (MJ/kg/K)

(Density (Mg/m3)- and Temperature (K)-dependent)

301

EOS St DUt

M GPU

Total Specific-Entropy (MJ/kg/K)

(Density (Mg/m3)- and Total Specific-Internal-Energy

(MJ/kg)-dependent)

301

EOS T DAt

II GPU

Temperature (K)

(Density (Mg/m3)- and Total Specific-Free-Energy

(MJ/kg)-dependent)

301

Continued on next page

Category 3: Total EOS in SESAME’s 301 tables

132 CHAPTER 14. APPENDIX

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS T DGt

II GPU

Temperature (K)

(Density (Mg/m3)- and Total Specific-Gibbs-Free-Energy

(MJ/kg)-dependent)

301

EOS T DPt

II GPU

Temperature (K)

(Density (Mg/m3)- and Total Pressure

(GPa)-dependent)

301

EOS T DSt

II GPU

Temperature (K)

(Density (Mg/m3)- and Total Specific-Entropy

(MJ/kg/K)-dependent)

301

EOS T DUt

II GPU

Temperature (K)

(Density (Mg/m3)- and Total Specific-Internal-Energy

(MJ/kg)-dependent)

301

EOS Ut DAt

M GPU

Total Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Total Specific-Free-Energy

(MJ/kg)-dependent)

301

EOS Ut DGt

M GPU

Total Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Total Specific-Gibbs-Free-Energy

(MJ/kg)-dependent)

301

EOS Ut DPt

M GPU

Total Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Total Pressure

(GPa)-dependent)

301

EOS Ut DSt

M GPU

Total Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Total Specific-Entropy

(MJ/kg/K)-dependent)

301

EOS Ut DT

GPU

Total Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Temperature (K)-dependent)

301

EOS Ut PtT

M

Total Specific-Internal-Energy (MJ/kg)

(Total Pressure (GPa)- and Temperature (K)-dependent)

301

EOS V PtT

I

Specific-Volume (m3/Mg)

(Total Pressure (GPa)- and Temperature (K)-dependent)

301

Category 3: Total EOS in SESAME’s 301 tables

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 133

B.4 Category 4: Ion+Cold EOS in SESAME’s 303 tables

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Aic DGic

M GPU

Ion Specific-Helmholtz-Free-Energy plus Cold Curve

Specific-Helmholtz-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Ion Specific-Gibbs-Free-Energy

plus Cold Curve Specific-Gibbs-Free-Energy

(MJ/kg)-dependent)

303

EOS Aic DPic

M GPU

Ion Specific-Free-Energy plus Cold Curve

Specific-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Ion Pressure plus Cold Curve

Pressure (GPa)-dependent)

303

EOS Aic DSic

M GPU

Ion Specific-Free-Energy plus Cold Curve

Specific-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Ion Pressure plus Cold Curve

Specific-Entropy (MJ/kg/K)-dependent)

303

EOS Aic DT

GPU

Ion Specific-Free-Energy plus Cold Curve

Specific-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Temperature (K)-dependent)

303

EOS Aic DUic

M GPU

Ion Specific-Free-Energy plus Cold Curve

Specific-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Ion Specific-Internal-Energy plus

Cold Curve Specific-Internal-Energy

(MJ/kg)-dependent)

303

EOS Gic DAic

M GPU

Ion Specific-Gibbs-Free-Energy plus Cold Curve

Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Ion

Specific-Helmholtz-Free-Energy plus Cold Curve

Specific-Helmholtz-Free-Energy (MJ/kg)-dependent)

303

EOS Gic DPic

M GPU

Ion Specific-Gibbs-Free-Energy plus Cold Curve

Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Ion Pressure plus Cold Curve

Pressure (GPa)-dependent)

303

Continued on next page

Category 4: Ion+Cold EOS in SESAME’s 303 tables

134 CHAPTER 14. APPENDIX

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Gic DSic

M GPU

Ion Specific-Gibbs-Free-Energy plus Cold Curve

Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Ion Specific-Entropy plus Cold

Curve Specific-Entropy (MJ/kg/K)-dependent)

303

EOS Gic DT

GPU

Ion Specific-Gibbs-Free-Energy plus Cold Curve

Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Temperature (K)-dependent)

303

EOS Gic DUic

M GPU

Ion Specific-Gibbs-Free-Energy plus Cold Curve

Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Ion Specific-Internal-Energy plus

Cold Curve Specific-Internal-Energy

(MJ/kg)-dependent)

303

EOS Pic DAic

M GPU

Ion Pressure plus Cold Curve Pressure (GPa)

(Density (Mg/m3)- and Ion Specific-Free-Energy plus

Cold Curve Specific-Free-Energy (MJ/kg)-dependent)

303

EOS Pic DGic

M GPU

Ion Pressure plus Cold Curve Pressure (GPa)

(Density (Mg/m3)- and Ion Specific-Gibbs-Free-Energy

plus Cold Curve Specific-Gibbs-Free-Energy

(MJ/kg)-dependent)

303

EOS Pic DSic

M GPU

Ion Pressure plus Cold Curve Pressure (GPa)

(Density (Mg/m3)- and Ion Pressure plus Cold Curve

Specific-Entropy (MJ/kg/K)-dependent)

303

EOS Pic DT

GPU

Ion Pressure plus Cold Curve Pressure (GPa)

(Density (Mg/m3)- and Temperature (K)-dependent)

303

EOS Pic DUic

M GPU

Ion Pressure plus Cold Curve Pressure (GPa)

(Density (Mg/m3)- and Ion Specific-Internal-Energy plus

Cold Curve Specific-Internal-Energy

(MJ/kg)-dependent)

303

EOS Sic DAic

M GPU

Ion Specific-Entropy plus Cold Curve Specific-Entropy

(MJ/kg/K)

(Density (Mg/m3)- and Ion Specific-Free-Energy plus

Cold Curve Specific-Free-Energy (MJ/kg)-dependent)

303

Continued on next page

Category 4: Ion+Cold EOS in SESAME’s 303 tables

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 135

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Sic DGic

M GPU

Ion Specific-Entropy (MJ/kg/K)

(Density (Mg/m3)- and Ion Specific-Gibbs-Free-Energy

(MJ/kg)-dependent)

303

EOS Sic DPic

M GPU

Ion Specific-Entropy plus Cold Curve Specific-Entropy

(MJ/kg/K)

(Density (Mg/m3)- and Ion Pressure plus Cold Curve

Pressure (GPa)-dependent)

303

EOS Sic DT

GPU

Ion Specific-Entropy plus Cold Curve Specific-Entropy

(MJ/kg/K)

(Density (Mg/m3)- and Temperature (K)-dependent)

303

EOS Sic DUic

M GPU

Ion Specific-Entropy plus Cold Curve Specific-Entropy

(MJ/kg/K)

(Density (Mg/m3)- and Ion Specific-Internal-Energy plus

Cold Curve Specific-Internal-Energy

(MJ/kg)-dependent)

303

EOS T DAic

II GPU

Temperature (K)

(Density (Mg/m3)- and Ion Specific-Free-Energy plus

Cold Curve Specific-Free-Energy (MJ/kg)-dependent)

303

EOS T DGic

II GPU

Temperature (K)

(Density (Mg/m3)- and Ion Specific-Gibbs-Free-Energy

plus Cold Curve Specific-Gibbs-Free-Energy

(MJ/kg)-dependent)

303

EOS T DPic

II GPU

Temperature (K)

(Density (Mg/m3)- and Ion Pressure plus Cold Curve

Pressure (GPa)-dependent)

303

EOS T DSic

II GPU

Temperature (K)

(Density (Mg/m3)- and Ion Pressure plus Cold Curve

Specific-Entropy (MJ/kg/K)-dependent)

303

EOS T DUic

II GPU

Temperature (K)

(Density (Mg/m3)- and Ion Specific-Internal-Energy plus

Cold Curve Specific-Internal-Energy

(MJ/kg)-dependent)

303

Continued on next page

Category 4: Ion+Cold EOS in SESAME’s 303 tables

136 CHAPTER 14. APPENDIX

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Uic DAic

M GPU

Ion Specific-Internal-Energy plus Cold Curve

Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Ion Specific-Free-Energy plus

Cold Curve Specific-Free-Energy (MJ/kg)-dependent)

303

EOS Uic DGic

M GPU

Ion Specific-Internal-Energy plus Cold Curve

Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Ion Specific-Gibbs-Free-Energy

plus Cold Curve Specific-Gibbs-Free-Energy

(MJ/kg)-dependent)

303

EOS Uic DPic

M GPU

Ion Specific-Internal-Energy plus Cold Curve

Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Ion Pressure plus Cold Curve

Pressure (GPa)-dependent)

303

EOS Uic DSic

M GPU

Ion Specific-Internal-Energy plus Cold Curve

Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Ion Pressure plus Cold Curve

Specific-Entropy (MJ/kg/K)-dependent)

303

EOS Uic DT

GPU

Ion Specific-Internal-Energy plus Cold Curve

Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Temperature (K)-dependent)

303

Category 4: Ion+Cold EOS in SESAME’s 303 tables

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 137

B.5 Category 5: Electron EOS in SESAME’s 304 tables

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Ae DGe

M GPU

Electron Specific-Helmholtz-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Electron

Specific-Gibbs-Free-Energy (MJ/kg)-dependent)

304

EOS Ae DPe

M GPU

Electron Specific-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Electron Pressure

(GPa)-dependent)

304

EOS Ae DSe

M GPU

Electron Specific-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Electron Specific-Entropy

(MJ/kg/K)-dependent)

304

EOS Ae DT

GPU

Electron Specific-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Temperature (K)-dependent)

304

EOS Ae DUe

M GPU

Electron Specific-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Electron

Specific-Internal-Energy (MJ/kg)-dependent)

304

EOS Ge DAe

M GPU

Electron Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Electron

Specific-Helmholtz-Free-Energy (MJ/kg)-dependent)

304

EOS Ge DPe

M GPU

Electron Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Electron Pressure

(GPa)-dependent)

304

EOS Ge DSe

M GPU

Electron Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Electron Specific-Entropy

(MJ/kg/K)-dependent)

304

EOS Ge DT

GPU

Electron Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Temperature (K)-dependent)

304

EOS Ge DUe

M GPU

Electron Specific-Gibbs-Free-Energy (MJ/kg)

(Density (Mg/m3)- and Electron

Specific-Internal-Energy (MJ/kg)-dependent)

304

EOS Pe DAe

M GPU

Electron Pressure (GPa)

(Density (Mg/m3)- and Electron Specific-Free-Energy

(MJ/kg)-dependent)

304

Continued on next page

Category 5: Electron EOS in SESAME’s 304 tables

138 CHAPTER 14. APPENDIX

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Pe DGe

M GPU

Electron Pressure (GPa)

(Density (Mg/m3)- and Electron

Specific-Gibbs-Free-Energy (MJ/kg)-dependent)

304

EOS Pe DSe

M GPU

Electron Pressure (GPa)

(Density (Mg/m3)- and Electron Specific-Entropy

(MJ/kg/K)-dependent)

304

EOS Pe DT

GPU

Electron Pressure (GPa)

(Density (Mg/m3)- and Temperature (K)-dependent)

304

EOS Pe DUe

M GPU

Electron Pressure (GPa)

(Density (Mg/m3)- and Electron

Specific-Internal-Energy (MJ/kg)-dependent)

304

EOS Se DAe

M GPU

Electron Specific-Entropy (MJ/kg/K)

(Density (Mg/m3)- and Electron Specific-Free-Energy

(MJ/kg)-dependent)

304

EOS Se DGe

M GPU

Electron Specific-Entropy (MJ/kg/K)

(Density (Mg/m3)- and Electron

Specific-Gibbs-Free-Energy (MJ/kg)-dependent)

304

EOS Se DPe

M GPU

Electron Specific-Entropy (MJ/kg/K)

(Density (Mg/m3)- and Electron Pressure

(GPa)-dependent)

304

EOS Se DT

GPU

Electron Specific-Entropy (MJ/kg/K)

(Density (Mg/m3)- and Temperature (K)-dependent)

304

EOS Se DUe

M GPU

Electron Specific-Entropy (MJ/kg/K)

(Density (Mg/m3)- and Electron

Specific-Internal-Energy (MJ/kg)-dependent)

304

EOS T DAe

II GPU

Temperature (K)

(Density (Mg/m3)- and Electron Specific-Free-Energy

(MJ/kg)-dependent)

304

EOS T DGe

II GPU

Temperature (K)

(Density (Mg/m3)- and Electron

Specific-Gibbs-Free-Energy (MJ/kg)-dependent)

304

Continued on next page

Category 5: Electron EOS in SESAME’s 304 tables

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 139

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS T DPe

II GPU

Temperature (K)

(Density (Mg/m3)- and Electron Pressure

(GPa)-dependent)

304

EOS T DSe

II GPU

Temperature (K)

(Density (Mg/m3)- and Electron Specific-Entropy

(MJ/kg/K)-dependent)

304

EOS T DUe

II GPU

Temperature (K)

(Density (Mg/m3)- and Electron

Specific-Internal-Energy (MJ/kg)-dependent)

304

EOS Ue DAe

M GPU

Electron Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Electron Specific-Free-Energy

(MJ/kg)-dependent)

304

EOS Ue DGe

M GPU

Electron Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Electron

Specific-Gibbs-Free-Energy (MJ/kg)-dependent)

304

EOS Ue DPe

M GPU

Electron Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Electron Pressure

(GPa)-dependent)

304

EOS Ue DSe

M GPU

Electron Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Electron Specific-Entropy

(MJ/kg/K)-dependent)

304

EOS Ue DT

GPU

Electron Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)- and Temperature (K)-dependent)

304

Category 5: Electron EOS in SESAME’s 304 tables

140 CHAPTER 14. APPENDIX

B.6 Category 6: Ion EOS in SESAME’s 305 tables

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Aiz DGiz

M GPU

Ion Specific-Helmholtz-Free-Energy Including Zero Point

(MJ/kg)

(Density (Mg/m3)- and Ion Specific-Gibbs-Free-Energy

Including Zero Point (MJ/kg)-dependent)

305

EOS Aiz DPiz

M GPU

Ion Specific-Free-Energy Including Zero Point (MJ/kg)

(Density (Mg/m3)- and Ion Pressure Including Zero

Point (GPa)-dependent)

305

EOS Aiz DSiz

M GPU

Ion Specific-Free-Energy Including Zero Point (MJ/kg)

(Density (Mg/m3)- and Ion Pressure Including Zero

Specific-Entropy (MJ/kg/K)-dependent)

305

EOS Aiz DT

GPU

Ion Specific-Free-Energy Including Zero Point (MJ/kg)

(Density (Mg/m3)- and Temperature (K)-dependent)

305

EOS Aiz DUiz

M GPU

Ion Specific-Free-Energy Including Zero Point (MJ/kg)

(Density (Mg/m3)- and Ion Specific-Internal-Energy

Including Zero Point (MJ/kg)-dependent)

305

EOS Giz DAiz

M GPU

Ion Specific-Gibbs-Free-Energy Including Zero Point

(MJ/kg)

(Density (Mg/m3)- and Ion

Specific-Helmholtz-Free-Energy Including Zero Point

(MJ/kg)-dependent)

305

EOS Giz DPiz

M GPU

Ion Specific-Gibbs-Free-Energy Including Zero Point

(MJ/kg)

(Density (Mg/m3)- and Ion Pressure Including Zero

Point (GPa)-dependent)

305

EOS Giz DSiz

M GPU

Ion Specific-Gibbs-Free-Energy Including Zero Point

(MJ/kg)

(Density (Mg/m3)- and Ion Specific-Entropy Including

Zero Point (MJ/kg/K)-dependent)

305

EOS Giz DT

GPU

Ion Specific-Gibbs-Free-Energy Including Zero Point

(MJ/kg)

(Density (Mg/m3)- and Temperature (K)-dependent)

305

Continued on next page

Category 6: Ion EOS in SESAME’s 305 tables

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 141

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Giz DUiz

M GPU

Ion Specific-Gibbs-Free-Energy Including Zero Point

(MJ/kg)

(Density (Mg/m3)- and Ion Specific-Internal-Energy

Including Zero Point (MJ/kg)-dependent)

305

EOS Piz DAiz

M GPU

Ion Pressure Including Zero Point (GPa)

(Density (Mg/m3)- and Ion Specific-Free-Energy

Including Zero Point (MJ/kg)-dependent)

305

EOS Piz DGiz

M GPU

Ion Pressure Including Zero Point (GPa)

(Density (Mg/m3)- and Ion Specific-Gibbs-Free-Energy

Including Zero Point (MJ/kg)-dependent)

305

EOS Piz DSiz

M GPU

Ion Pressure Including Zero Point (GPa)

(Density (Mg/m3)- and Ion Pressure Including Zero

Specific-Entropy (MJ/kg/K)-dependent)

305

EOS Piz DT

GPU

Ion Pressure Including Zero Point (GPa)

(Density (Mg/m3)- and Temperature (K)-dependent)

305

EOS Piz DUiz

M GPU

Ion Pressure Including Zero Point (GPa)

(Density (Mg/m3)- and Ion Specific-Internal-Energy

Including Zero Point (MJ/kg)-dependent)

305

EOS Siz DAiz

M GPU

Ion Specific-Entropy Including Zero Specific-Entropy

(MJ/kg/K)

(Density (Mg/m3)- and Ion Specific-Free-Energy

Including Zero Point (MJ/kg)-dependent)

305

EOS Siz DGiz

M GPU

Ion Specific-Entropy (MJ/kg/K)

(Density (Mg/m3)- and Ion Specific-Gibbs-Free-Energy

(MJ/kg)-dependent)

305

EOS Siz DPiz

M GPU

Ion Specific-Entropy Including Zero Specific-Entropy

(MJ/kg/K)

(Density (Mg/m3)- and Ion Pressure Including Zero

Point (GPa)-dependent)

305

EOS Siz DT

GPU

Ion Specific-Entropy Including Zero Specific-Entropy

(MJ/kg/K)

(Density (Mg/m3)- and Temperature (K)-dependent)

305

Continued on next page

Category 6: Ion EOS in SESAME’s 305 tables

142 CHAPTER 14. APPENDIX

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Siz DUiz

M GPU

Ion Specific-Entropy Including Zero Specific-Entropy

(MJ/kg/K)

(Density (Mg/m3)- and Ion Specific-Internal-Energy

Including Zero Point (MJ/kg)-dependent)

305

EOS T DAiz

II GPU

Temperature (K)

(Density (Mg/m3)- and Ion Specific-Free-Energy

Including Zero Point (MJ/kg)-dependent)

305

EOS T DGiz

II GPU

Temperature (K)

(Density (Mg/m3)- and Ion Specific-Gibbs-Free-Energy

Including Zero Point (MJ/kg)-dependent)

305

EOS T DPiz

II GPU

Temperature (K)

(Density (Mg/m3)- and Ion Pressure Including Zero

Point (GPa)-dependent)

305

EOS T DSiz

II GPU

Temperature (K)

(Density (Mg/m3)- and Ion Pressure Including Zero

Specific-Entropy (MJ/kg/K)-dependent)

305

EOS T DUiz

II GPU

Temperature (K)

(Density (Mg/m3)- and Ion Specific-Internal-Energy

Including Zero Point (MJ/kg)-dependent)

305

EOS Uiz DAiz

M GPU

Ion Specific-Internal-Energy Including Zero Point

(MJ/kg)

(Density (Mg/m3)- and Ion Specific-Free-Energy

Including Zero Point (MJ/kg)-dependent)

305

EOS Uiz DGiz

M GPU

Ion Specific-Internal-Energy Including Zero Point

(MJ/kg)

(Density (Mg/m3)- and Ion Specific-Gibbs-Free-Energy

Including Zero Point (MJ/kg)-dependent)

305

EOS Uiz DPiz

M GPU

Ion Specific-Internal-Energy Including Zero Point

(MJ/kg)

(Density (Mg/m3)- and Ion Pressure Including Zero

Point (GPa)-dependent)

305

Continued on next page

Category 6: Ion EOS in SESAME’s 305 tables

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 143

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Uiz DSiz

M GPU

Ion Specific-Internal-Energy Including Zero Point

(MJ/kg)

(Density (Mg/m3)- and Ion Pressure Including Zero

Specific-Entropy (MJ/kg/K)-dependent)

305

EOS Uiz DT

GPU

Ion Specific-Internal-Energy Including Zero Point

(MJ/kg)

(Density (Mg/m3)- and Temperature (K)-dependent)

305

Category 6: Ion EOS in SESAME’s 305 tables

144 CHAPTER 14. APPENDIX

B.7 Category 7: Cold curve EOS in SESAME’s 306 tables

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Ac D

GPU

Specific-Free-Energy Cold Curve (MJ/kg)

(Density (Mg/m3)-dependent)

306

EOS Gc D

GPU

Specific-Gibbs-Free-Energy Cold Curve (MJ/kg)

(Density (Mg/m3)-dependent)

306

EOS Pc D

GPU

Pressure Cold Curve (GPa)

(Density (Mg/m3)-dependent)

306

EOS Uc D

GPU

Specific-Internal-Energy Cold Curve (MJ/kg)

(Density (Mg/m3)-dependent)

306

Category 7: Cold curve EOS in SESAME’s 306 tables

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 145

B.8 Category 8: Mass fraction EOS in SESAME’s 321 tables

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS M DT Mass Fraction (Density− andTemperature− dependent) 321

Category 8: Mass fraction EOS in SESAME’s 321 tables

146 CHAPTER 14. APPENDIX

B.9 Category 9: Vaporization data in SESAME’s 401 tables

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Als Av

M

Liquid or Solid Specific-Free-Energy (MJ/kg)

(Vapor Specific-Free-Energy (MJ/kg)-dependent)

401

EOS Als Dls

M

Liquid or Solid Specific-Free-Energy (MJ/kg)

(Liquid or Solid Density on coexistence line

(Mg/m3)-dependent)

401

EOS Als Dv

M

Liquid or Solid Specific-Free-Energy (MJ/kg)

(Vapor Density on coexistence line (Mg/m3)-dependent)

401

EOS Als Pv

M

Liquid or Solid Specific-Free-Energy (MJ/kg)

(Vapor Pressure (GPa)-dependent)

401

EOS Als T Liquid or Solid Specific-Free-Energy (MJ/kg)

(Temperature (K)-dependent)

401

EOS Als Uls

M

Liquid or Solid Specific-Free-Energy (MJ/kg)

(Liquid or Solid Specific-Internal-Energy

(MJ/kg)-dependent)

401

EOS Als Uv

M

Liquid or Solid Specific-Free-Energy (MJ/kg)

(Vapor Specific-Internal-Energy (MJ/kg)-dependent)

401

EOS Av Als

M

Vapor Specific-Free-Energy (MJ/kg)

(Liquid or Solid Specific-Free-Energy

(MJ/kg)-dependent)

401

EOS Av Dls

M

Vapor Specific-Free-Energy (MJ/kg)

(Liquid or Solid Density on coexistence line

(Mg/m3)-dependent)

401

EOS Av Dv

M

Vapor Specific-Free-Energy (MJ/kg)

(Vapor Density on coexistence line (Mg/m3)-dependent)

401

EOS Av Pv

M

Vapor Specific-Free-Energy (MJ/kg)

(Vapor Pressure (GPa)-dependent)

401

EOS Av T Vapor Specific-Free-Energy (MJ/kg)

(Temperature (K)-dependent)

401

EOS Av Uls

M

Vapor Specific-Free-Energy (MJ/kg)

(Liquid or Solid Specific-Internal-Energy

(MJ/kg)-dependent)

401

Continued on next page

Category 9: Vaporization data in SESAME’s 401 tables

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 147

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Av Uv

M

Vapor Specific-Free-Energy (MJ/kg)

(Vapor Specific-Internal-Energy (MJ/kg)-dependent)

401

EOS Dls Als

M

Liquid or Solid Density on coexistence line (Mg/m3)

(Liquid or Solid Specific-Free-Energy

(MJ/kg)-dependent)

401

EOS Dls Av

M

Liquid or Solid Density on coexistence line (Mg/m3)

(Vapor Specific-Free-Energy (MJ/kg)-dependent)

401

EOS Dls Dv

M

Liquid or Solid Density on coexistence line (Mg/m3)

(Vapor Density on coexistence line (Mg/m3)-dependent)

401

EOS Dls Pv

M

Liquid or Solid Density on coexistence line (Mg/m3)

(Vapor Pressure (GPa)-dependent)

401

EOS Dls T Liquid or Solid Density on coexistence line (Mg/m3)

(Temperature (K)-dependent)

401

EOS Dls Uls

M

Liquid or Solid Density on coexistence line (Mg/m3)

(Liquid or Solid Specific-Internal-Energy

(MJ/kg)-dependent)

401

EOS Dls Uv

M

Liquid or Solid Density on coexistence line (Mg/m3)

(Vapor Specific-Internal-Energy (MJ/kg)-dependent)

401

EOS Dv Als

M

Vapor Density on coexistence line (Mg/m3)

(Liquid or Solid Specific-Free-Energy

(MJ/kg)-dependent)

401

EOS Dv Av

M

Vapor Density on coexistence line (Mg/m3)

(Vapor Specific-Free-Energy (MJ/kg)-dependent)

401

EOS Dv Dls

M

Vapor Density on coexistence line (Mg/m3)

(Liquid or Solid Density on coexistence line

(Mg/m3)-dependent)

401

EOS Dv Pv

M

Vapor Density on coexistence line (Mg/m3)

(Vapor Pressure (GPa)-dependent)

401

EOS Dv T Vapor Density on coexistence line (Mg/m3)

(Temperature (K)-dependent)

401

EOS Dv Uls

M

Vapor Density on coexistence line (Mg/m3)

(Liquid or Solid Specific-Internal-Energy

(MJ/kg)-dependent)

401

Continued on next page

Category 9: Vaporization data in SESAME’s 401 tables

148 CHAPTER 14. APPENDIX

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Dv Uv

M

Vapor Density on coexistence line (Mg/m3)

(Vapor Specific-Internal-Energy (MJ/kg)-dependent)

401

EOS Pv Als

M

Vapor Pressure (GPa)

(Liquid or Solid Specific-Free-Energy

(MJ/kg)-dependent)

401

EOS Pv Av

M

Vapor Pressure (GPa)

(Vapor Specific-Free-Energy (MJ/kg)-dependent)

401

EOS Pv Dls

M

Vapor Pressure (GPa)

(Liquid or Solid Density on coexistence line

(Mg/m3)-dependent)

401

EOS Pv Dv

M

Vapor Pressure (GPa)

(Vapor Density on coexistence line (Mg/m3)-dependent)

401

EOS Pv T Vapor Pressure (GPa)

(Temperature (K)-dependent)

401

EOS Pv Uls

M

Vapor Pressure (GPa)

(Liquid or Solid Specific-Internal-Energy

(MJ/kg)-dependent)

401

EOS Pv Uv

M

Vapor Pressure (GPa)

(Vapor Specific-Internal-Energy (MJ/kg)-dependent)

401

EOS T Als

I

Temperature (K)

(Liquid or Solid Specific-Free-Energy

(MJ/kg)-dependent)

401

EOS T Av

I

Temperature (K)

(Vapor Specific-Free-Energy (MJ/kg)-dependent)

401

EOS T Dls

I

Temperature (K)

(Liquid or Solid Density on coexistence line

(Mg/m3)-dependent)

401

EOS T Dv

I

Temperature (K)

(Vapor Density on coexistence line (Mg/m3)-dependent)

401

EOS T Pv

I

Temperature (K)

(Vapor Pressure (GPa)-dependent)

401

Continued on next page

Category 9: Vaporization data in SESAME’s 401 tables

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 149

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS T Uls

I

Temperature (K)

(Liquid or Solid Specific-Internal-Energy

(MJ/kg)-dependent)

401

EOS T Uv

I

Temperature (K)

(Vapor Specific-Internal-Energy (MJ/kg)-dependent)

401

EOS Uls Als

M

Liquid or Solid Specific-Internal-Energy (MJ/kg)

(Liquid or Solid Specific-Free-Energy

(MJ/kg)-dependent)

401

EOS Uls Av

M

Liquid or Solid Specific-Internal-Energy (MJ/kg)

(Vapor Specific-Free-Energy (MJ/kg)-dependent)

401

EOS Uls Dls

M

Liquid or Solid Specific-Internal-Energy (MJ/kg)

(Liquid or Solid Density on coexistence line

(Mg/m3)-dependent)

401

EOS Uls Dv

M

Liquid or Solid Specific-Internal-Energy (MJ/kg)

(Vapor Density on coexistence line (Mg/m3)-dependent)

401

EOS Uls Pv

M

Liquid or Solid Specific-Internal-Energy (MJ/kg)

(Vapor Pressure (GPa)-dependent)

401

EOS Uls T Liquid or Solid Specific-Internal-Energy (MJ/kg)

(Temperature (K)-dependent)

401

EOS Uls Uv

M

Liquid or Solid Specific-Internal-Energy (MJ/kg)

(Vapor Specific-Internal-Energy (MJ/kg)-dependent)

401

EOS Uv Als

M

Vapor Specific-Internal-Energy (MJ/kg)

(Liquid or Solid Specific-Free-Energy

(MJ/kg)-dependent)

401

EOS Uv Av

M

Vapor Specific-Internal-Energy (MJ/kg)

(Vapor Specific-Free-Energy (MJ/kg)-dependent)

401

EOS Uv Dls

M

Vapor Specific-Internal-Energy (MJ/kg)

(Liquid or Solid Density on coexistence line

(Mg/m3)-dependent)

401

EOS Uv Dv

M

Vapor Specific-Internal-Energy (MJ/kg)

(Vapor Density on coexistence line (Mg/m3)-dependent)

401

EOS Uv Pv

M

Vapor Specific-Internal-Energy (MJ/kg)

(Vapor Pressure (GPa)-dependent)

401

Continued on next page

Category 9: Vaporization data in SESAME’s 401 tables

150 CHAPTER 14. APPENDIX

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Uv T Vapor Specific-Internal-Energy (MJ/kg)

(Temperature (K)-dependent)

401

EOS Uv Uls

M

Vapor Specific-Internal-Energy (MJ/kg)

(Liquid or Solid Specific-Internal-Energy

(MJ/kg)-dependent)

401

Category 9: Vaporization data in SESAME’s 401 tables

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 151

B.10 Category 10: Melt data in SESAME’s 411 and 412 tables

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Af D

GPU

Freeze Specific-Free-Energy (MJ/kg)

(Density (Mg/m3)-dependent)

412

EOS Af Pf

M

Freeze Specific-Free-Energy (MJ/kg)

(Freeze Pressure (GPa)-dependent)

412

EOS Af Tf

M

Freeze Specific-Free-Energy (MJ/kg)

(Freeze Temperature (K)-dependent)

412

EOS Af Uf

M

Freeze Specific-Free-Energy (MJ/kg)

(Freeze Specific-Internal-Energy (MJ/kg)-dependent)

412

EOS Am D

GPU

Melt Specific-Free-Energy (MJ/kg)

(Density (Mg/m3)-dependent)

411

EOS Am Pm

M

Melt Specific-Free-Energy (MJ/kg)

(Melt Pressure (GPa)-dependent)

411

EOS Am Tm

M

Melt Specific-Free-Energy (MJ/kg)

(Melt Temperature (K)-dependent)

411

EOS Am Um

M

Melt Specific-Free-Energy (MJ/kg)

(Melt Specific-Internal-Energy (MJ/kg)-dependent)

411

EOS D Af

I

Density (Mg/m3)

(Freeze Specific-Free-Energy (MJ/kg)-dependent)

412

EOS D Am

I

Density (Mg/m3)

(Melt Specific-Free-Energy (MJ/kg)-dependent)

411

EOS D Pf

I

Density (Mg/m3)

(Freeze Pressure (GPa)-dependent)

412

EOS D Pm

I

Density (Mg/m3)

(Melt Pressure (GPa)-dependent)

411

EOS D Tf

I

Density (Mg/m3)

(Freeze Temperature (K)-dependent)

412

EOS D Tm

I

Density (Mg/m3)

(Melt Temperature (K)-dependent)

411

EOS D Uf

I

Density (Mg/m3)

(Freeze Specific-Internal-Energy (MJ/kg)-dependent)

412

Continued on next page

Category 10: Melt data in SESAME’s 411 and 412 tables

152 CHAPTER 14. APPENDIX

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS D Um

I

Density (Mg/m3)

(Melt Specific-Internal-Energy (MJ/kg)-dependent)

411

EOS Pf Af

M

Freeze Pressure (GPa)

(Freeze Specific-Free-Energy (MJ/kg)-dependent)

412

EOS Pf D

GPU

Freeze Pressure (GPa)

(Density (Mg/m3)-dependent)

412

EOS Pf Tf

M

Freeze Pressure (GPa)

(Freeze Temperature (K)-dependent)

412

EOS Pf Uf

M

Freeze Pressure (GPa)

(Freeze Specific-Internal-Energy (MJ/kg)-dependent)

412

EOS Pm Am

M

Melt Pressure (GPa)

(Melt Specific-Free-Energy (MJ/kg)-dependent)

411

EOS Pm D

GPU

Melt Pressure (GPa)

(Density (Mg/m3)-dependent)

411

EOS Pm Tm

M

Melt Pressure (GPa)

(Melt Temperature (K)-dependent)

411

EOS Pm Um

M

Melt Pressure (GPa)

(Melt Specific-Internal-Energy (MJ/kg)-dependent)

411

EOS Tf Af

M

Freeze Temperature (K)

(Freeze Specific-Free-Energy (MJ/kg)-dependent)

412

EOS Tf D

GPU

Freeze Temperature (K)

(Density (Mg/m3)-dependent)

412

EOS Tf Pf

M

Freeze Temperature (K)

(Freeze Pressure (GPa)-dependent)

412

EOS Tf Uf

M

Freeze Temperature (K)

(Freeze Specific-Internal-Energy (MJ/kg)-dependent)

412

EOS Tm Am

M

Melt Temperature (K)

(Melt Specific-Free-Energy (MJ/kg)-dependent)

411

EOS Tm D

GPU

Melt Temperature (K)

(Density (Mg/m3)-dependent)

411

EOS Tm Pm

M

Melt Temperature (K)

(Melt Pressure (GPa)-dependent)

411

Continued on next page

Category 10: Melt data in SESAME’s 411 and 412 tables

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 153

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Tm Um

M

Melt Temperature (K)

(Melt Specific-Internal-Energy (MJ/kg)-dependent)

411

EOS Uf Af

M

Freeze Specific-Internal-Energy (MJ/kg)

(Freeze Specific-Free-Energy (MJ/kg)-dependent)

412

EOS Uf D

GPU

Freeze Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)-dependent)

412

EOS Uf Pf

M

Freeze Specific-Internal-Energy (MJ/kg)

(Freeze Pressure (GPa)-dependent)

412

EOS Uf Tf

M

Freeze Specific-Internal-Energy (MJ/kg)

(Freeze Temperature (K)-dependent)

412

EOS Um Am

M

Melt Specific-Internal-Energy (MJ/kg)

(Melt Specific-Free-Energy (MJ/kg)-dependent)

411

EOS Um D

GPU

Melt Specific-Internal-Energy (MJ/kg)

(Density (Mg/m3)-dependent)

411

EOS Um Pm

M

Melt Specific-Internal-Energy (MJ/kg)

(Melt Pressure (GPa)-dependent)

411

EOS Um Tm

M

Melt Specific-Internal-Energy (MJ/kg)

(Melt Temperature (K)-dependent)

411

Category 10: Melt data in SESAME’s 411 and 412 tables

154 CHAPTER 14. APPENDIX

B.11 Category 11: Shear Modulus data in SESAME’s 431 tables

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS D Gs

I

Density (Mg/m3)

(Shear Modulus (Gpa)-dependent)

431

EOS Gs D

GPU

Shear Modulus (Gpa)

(Density (Mg/m3)-dependent)

431

Category 11: Shear Modulus data in SESAME’s 431 tables

B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 155

B.12 Category 12: Opacity data in SESAME’s 500-series tables

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS Keo DT

GPU

Electron Conductive Opacity (Opacity Model) (cm2/g)

(Density (Mg/m3)- and Temperature (eV)-dependent)

503

EOS Kp DT

GPU

Planck Mean Opacity (cm2/g)

(Density (Mg/m3)- and Temperature (eV)-dependent)

505

EOS Kr DT

GPU

Rosseland Mean Opacity (cm2/g)

(Density (Mg/m3)- and Temperature (eV)-dependent)

502

EOS Ogb Calculated versus Interpolated Opacity Grid Boundary 501

EOS Zfo DT

GPU

Mean Ion Charge (OpacityModel)

(free electrons per atom) (Density (Mg/m3)- and

Temperature (eV)-dependent)

504

Category 12: Opacity data in SESAME’s 500-series tables

156 CHAPTER 14. APPENDIX

B.13 Category 13: Conductivity data in SESAME’s 600-series tables

EOSPAC 6

Constant

Description SESAME

Table(s)

EOS B DT

GPU

Thermoelectric Coefficient (1/cm2/s)

(Density (Mg/m3)- and Temperature (eV)-dependent)

604

EOS Kc DT

GPU

Electron Conductive Opacity (Conductivity Model)

(cm2/g)

(Density (Mg/m3)- and Temperature (eV)-dependent)

605

EOS Kec DT

GPU

Electrical Conductivity (1/s)

(Density (Mg/m3)- and Temperature (eV)-dependent)

602

EOS Ktc DT

GPU

Thermal Conductivity (1/cm/s)

(Density (Mg/m3)- and Temperature (eV)-dependent)

603

EOS Zfc DT

GPU

Mean Ion Charge (ConductivityModel)

(free electrons per atom) (Density (Mg/m3)- and

Temperature (eV)-dependent)

601

Category 13: Conductivity data in SESAME’s 600-series tables

C. TABLE TYPES: EOSPAC VERSION 5 CROSS REFERENCE 157

C TABLE TYPES: EOSPAC VERSION 5 CROSS REF-

ERENCE

Below are tables of defined constants corresponding to all of the data table types available within

EOSPAC version 5.

It is important to note that the actual values of these constants may change without notice; there-

fore, use the constant names – do not hardwire the values into the host code. The EOSPAC 6

Constants are color coded as follows:

• I indicates the table is inverted with respect to the first independent variable.

• II indicates the table is inverted with respect to the second independent variable.

• M indicates the table is a combination of two other tables.

• MIX indicates the table is compatible with the eos Mix routine.

EOSPAC 6

Constant

EOSPAC 5

Constant

Description SESAME

Table(s)

EOS B DT

MIX

ES4 THERME Thermoelectric Coefficient (1/cm2/s)

(Density (Mg/m3)- and Temperature

(eV)-dependent)

604

EOS D PtT

I

ES4 DPTTOT Density (Mg/m3)

(Total Pressure (GPa)- and

Temperature (K)-dependent)

301

EOS Gs D ES4 SHEARM Shear Modulus (Gpa)

(Density (Mg/m3)-dependent)

431

EOS Kc DT

MIX

ES4 OPACC3 Electron Conductive Opacity

(Conductivity Model) (cm2/g)

(Density (Mg/m3)- and Temperature

(eV)-dependent)

605

EOS Kec DT

MIX

ES4 ECONDE Electrical Conductivity (1/s)

(Density (Mg/m3)- and Temperature

(eV)-dependent)

602

Continued on next page

158 CHAPTER 14. APPENDIX

EOSPAC 6

Constant

EOSPAC 5

Constant

Description SESAME

Table(s)

EOS Keo DT

MIX

ES4 OPACC2 Electron Conductive Opacity

(Opacity Model) (cm2/g)

(Density (Mg/m3)- and Temperature

(eV)-dependent)

503

EOS Kp DT

MIX

ES4 OPACP Planck Mean Opacity (cm2/g)

(Density (Mg/m3)- and Temperature

(eV)-dependent)

505

EOS Kr DT

MIX

ES4 OPACR Rosseland Mean Opacity (cm2/g)

(Density (Mg/m3)- and Temperature

(eV)-dependent)

502

EOS Ktc DT

MIX

ES4 TCONDE Thermal Conductivity (1/cm/s)

(Density (Mg/m3)- and Temperature

(eV)-dependent)

603

EOS NullTable ES4 NULLPTR null table n/a

EOS Pc D

MIX

ES4 PRCLD Pressure Cold Curve (GPa)

(Density (Mg/m3)-dependent)

306

EOS Pe DT

MIX

ES4 PRELC Electron Pressure (GPa)

(Density (Mg/m3)- and Temperature

(K)-dependent)

304

EOS Pe DUe

M MIX

ES4 PNELC Electron Pressure (GPa)

(Density (Mg/m3)- and Electron

Specific-Internal-Energy

(MJ/kg)-dependent)

304

EOS Pf D ES4 PFREEZ Freeze Pressure (GPa)

(Density (Mg/m3)-dependent)

412

EOS Pic DT

MIX

ES4 PRION Ion Pressure plus Cold Curve

Pressure (GPa)

(Density (Mg/m3)- and Temperature

(K)-dependent)

303

Continued on next page

C. TABLE TYPES: EOSPAC VERSION 5 CROSS REFERENCE 159

EOSPAC 6

Constant

EOSPAC 5

Constant

Description SESAME

Table(s)

EOS Pic DUic

M MIX

ES4 PNION Ion Pressure plus Cold Curve

Pressure (GPa)

(Density (Mg/m3)- and Ion

Specific-Internal-Energy plus Cold

Curve Specific-Internal-Energy

(MJ/kg)-dependent)

303

EOS Pm D ES4 PMELT Melt Pressure (GPa)

(Density (Mg/m3)-dependent)

411

EOS Pt DT

MIX

ES4 PRTOT Total Pressure (GPa)

(Density (Mg/m3)- and Temperature

(K)-dependent)

301

EOS Pt DUt

M MIX

ES4 PNTOT Total Pressure (GPa)

(Density (Mg/m3)- and Total

Specific-Internal-Energy

(MJ/kg)-dependent)

301

EOS T DPe

II MIX

ES4 TPELC Temperature (K)

(Density (Mg/m3)- and Electron

Pressure (GPa)-dependent)

304

EOS T DPic

II MIX

ES4 TPION Temperature (K)

(Density (Mg/m3)- and Ion Pressure

plus Cold Curve Pressure

(GPa)-dependent)

303

EOS T DPt

II MIX

ES4 TPTOT Temperature (K)

(Density (Mg/m3)- and Total

Pressure (GPa)-dependent)

301

EOS T DUe

II MIX

ES4 TNELC Temperature (K)

(Density (Mg/m3)- and Electron

Specific-Internal-Energy

(MJ/kg)-dependent)

304

Continued on next page

160 CHAPTER 14. APPENDIX

EOSPAC 6

Constant

EOSPAC 5

Constant

Description SESAME

Table(s)

EOS T DUic

II MIX

ES4 TNION Temperature (K)

(Density (Mg/m3)- and Ion

Specific-Internal-Energy plus Cold

Curve Specific-Internal-Energy

(MJ/kg)-dependent)

303

EOS T DUt

II MIX

ES4 TNTOT Temperature (K)

(Density (Mg/m3)- and Total

Specific-Internal-Energy

(MJ/kg)-dependent)

301

EOS Tf D

II

ES4 TFREEZ Freeze Temperature (eV)

(Density (Mg/m3)-dependent)

412

EOS Tm D

II

ES4 TMELT Melt Temperature (K)

(Density (Mg/m3)-dependent)

411

EOS Uc D

II MIX

ES4 ENCLD Specific-Internal-Energy Cold Curve

(MJ/kg)

(Density (Mg/m3)-dependent)

306

EOS Ue DPe

M MIX

ES4 EPELC Electron Specific-Internal-Energy

(MJ/kg)

(Density (Mg/m3)- and Electron

Pressure (GPa)-dependent)

304

EOS Ue DT

MIX

ES4 ENELC Electron Specific-Internal-Energy

(MJ/kg)

(Density (Mg/m3)- and Temperature

(K)-dependent)

304

EOS Uf D ES4 EFREEZ Freeze Specific-Internal-Energy

(MJ/kg)

(Density (Mg/m3)-dependent)

412

EOS Uic DPic

M MIX

ES4 EPION Ion Specific-Internal-Energy plus

Cold Curve Specific-Internal-Energy

(MJ/kg)

(Density (Mg/m3)- and Ion Pressure

plus Cold Curve Pressure

(GPa)-dependent)

303

Continued on next page

C. TABLE TYPES: EOSPAC VERSION 5 CROSS REFERENCE 161

EOSPAC 6

Constant

EOSPAC 5

Constant

Description SESAME

Table(s)

EOS Uic DT

MIX

ES4 ENION Ion Specific-Internal-Energy plus

Cold Curve Specific-Internal-Energy

(MJ/kg)

(Density (Mg/m3)- and Temperature

(K)-dependent)

303

EOS Um D ES4 EMELT Melt Specific-Internal-Energy

(MJ/kg)

(Density (Mg/m3)-dependent)

411

EOS Ut DPt

M MIX

ES4 EPTOT Total Specific-Internal-Energy

(MJ/kg)

(Density (Mg/m3)- and Total

Pressure (GPa)-dependent)

301

EOS Ut DT

MIX

ES4 ENTOT Total Specific-Internal-Energy

(MJ/kg)

(Density (Mg/m3)- and Temperature

(K)-dependent)

301

EOS Zfc DT

MIX

ES4 ZFREE3 Mean Ion Charge (Conductivity

Model) (free electrons per atom)

(Density (Mg/m3)- and Temperature

(eV)-dependent)

601

EOS Zfo DT

MIX

ES4 ZFREE2 Mean Ion Charge (Opacity Model)

(free electrons per atom)

(Density (Mg/m3)- and Temperature

(eV)-dependent)

504

162 CHAPTER 14. APPENDIX

D. OPTIONS: SETUP PHASE 163

D OPTIONS: SETUP PHASE

Below is a list of defined constants corresponding to the user specified setup phase options available

within EOSPAC. This list has been alphabetized according to the defined constant names, which

are cross-referenced to the applicable EOSPAC 5[?],[?] defined constants. Unlike EOSPAC 5, these

EOSPAC option flags are to be applied to a given table handle using one of two public routines:

eos ResetOption and eos SetOption (see chapter 7 sections 1.7 and 1.11 respectively). For each

table handle, the eos SetOption routine may be used to enable or disable an optional feature.

Alternatively, the eos ResetOption routine may be used to reassert the default option settings if, in

fact, such default values are defined in the table below. Take note that some of the options require

an associated value passed into the eos SetOption routine parameter named tableOptionVal.

It is important to note that the actual values of these constants may change without notice; there-

fore, use the constant names – do not hardwire the values into the host code.

EOSPAC 6 Constant Default Option

State

(tableOptionVal)

Description

EOS ADJUST VAP PRES Disabled

(0)

This provides a mechanism for the

host code to pass into EOSPAC 6

adjusted pressure values

(corresponding to SAGE’s1

matdef(2,mat) input variable) for the

vapor dome to ensure ambient

conditions are reasonable for a

specified material. This option is only

valid when also using the option

named EOS PT SMOOTHING. It is

important to note that the units of the

tableOptionVal must be compatible

with Sesame pressure data (GPa). See

chapter 9 section 1 for more details.

Continued on next page

1SAGE is a one-, two-, and three-dimensional, multi-material Eulerian hydrodynamics code (LA-UR-04-2959).

164 CHAPTER 14. APPENDIX

EOSPAC 6 Constant Default Option

State

(tableOptionVal)

Description

EOS APPEND DATA Disabled

(N/A)

Append the loaded data table and

descriptive information to an ASCII

file named “TablesLoaded.dat” within

the current working directory. The

corresponding EOSPAC 5[?],[?] setup

option used to enable this feature is

lprnt = TRUE passed to ES1TABS.

EOS CALC FREE ENERGY Disabled

(N/A)

Instead of using the corresponding

Sesame data, the Helmholtz Free

Energy data is calculated using the

equations equations (3.1) to (3.3).

If no internal energy data exists for

T = 0, then the free energy data will

not be calculated.

EOS CHECK ARGS Disabled

(N/A)

Allow extensive argument checking.

EOS CREATE TZERO Disabled

(N/A)

Using linear extrapolation along each

isochore , create a T = 0 isotherm if

it’s unavailable when loading

300-series Sesame data.

EOS DUMP DATA Disabled

(N/A)

Write the loaded data table and

descriptive information to an ASCII

file named “TablesLoaded.dat” within

the current working directory. The

corresponding EOSPAC 5[?],[?] setup

option used to enable this feature is

lprnt = TRUE passed to ES1TABS.

Continued on next page

D. OPTIONS: SETUP PHASE 165

EOSPAC 6 Constant Default Option

State

(tableOptionVal)

Description

EOS INSERT DATA Disabled

(0)

Insert grid points between each

original grid point with respect to all

independent variables (i.e., increase

grid resolution). The value of the

eos SetOption parameter,

tableOptionVal, is to contain the

user-defined number of data points to

insert between existing data points.

The corresponding EOSPAC 5[?],[?]

setup option used to enable this

feature is iopt = 10000N , given

(0 ≤ N ≤ 9) passed to ES1TABS.

See chapter 9 section 7.2 about this

and EOS INVERT AT SETUP.

EOS INVERT AT SETUP Disabled

(N/A)

Create an inverted table during the

Setup Phase (chapter 5) and store it

in memory rather than the waiting

until the Interpolation Phase

(chapter 6) to invert tabulated data.

This option is implemented in

response to user requests for improved

interpolation performance of problems

that are heavily-dependent upon

inverted data tables.

This option is ignored and the

EOS INVALID OPTION FLAG error

code is returned if the host code

attempts to set this option for a

non-inverted data table type.

See chapter 9 section 7 for a

discussion about this option.

Continued on next page

166 CHAPTER 14. APPENDIX

EOSPAC 6 Constant Default Option

State

(tableOptionVal)

Description

EOS MONOTONIC IN X Disabled

(N/A)

Enable forced monotonicity with

respect to x of F(x,y).

The corresponding EOSPAC 5[?],[?]

setup option used to enable this

feature is iopt = 100 passed to

ES1TABS.

EOS MONOTONIC IN Y Disabled

(N/A)

Enable forced monotonicity with

respect to y of F(x,y).

The corresponding EOSPAC 5[?],[?]

setup option used to enable this

feature is iopt = 300 passed to

ES1TABS.

EOS PT SMOOTHING Disabled

(N/A)

This performs all the necessary data

smoothing taken from SAGE.2 See the

related setup option named

EOS ADJUST VAP PRES and the

related interpolation option named

EOS USE CUSTOM INTERP. See

chapter 9 section 1 for more details.

EOS SMOOTH Disabled

(N/A)

Enable data table smoothing that

imposes a linear floor on temperature

dependence, forces linear temperature

dependence for low temperature, and

forces linear density dependence for

low and high density.

The corresponding EOSPAC 5[?],[?]

setup option used to enable this

feature is iopt = 10 passed to

ES1TABS.

Continued on next page

2SAGE is a one-, two-, and three-dimensional, multi-material Eulerian hydrodynamics code (LA-UR-04-2959).

D. OPTIONS: SETUP PHASE 167

EOSPAC 6 Constant Default Option

State

(tableOptionVal)

Description

EOS SPLIT COWAN Disabled

(N/A)

Allows splitting for ion data table not

found in the database using the cold

curve plus Cowan-nuclear model for

ions.

EOS SPLIT FORCED Disabled

(N/A)

Forces specified splitting option for

data table.

EOS SPLIT IDEAL GAS Disabled

(N/A)

Allows splitting for ion data table not

found in the database using the cold

curve plus ideal gas model for ions.

EOS SPLIT NUM PROP Disabled

(N/A)

Allows splitting for ion data table not

found in the database using the cold

curve plus number-proportional model

for ions.

EOS USE MAXWELL TABLE Disabled

(N/A)

Use the Maxwell data in table 311

instead of the corresponding table

301.

168 CHAPTER 14. APPENDIX

E. DATA INFORMATION PARAMETERS 169

E DATA INFORMATION PARAMETERS

Information about a table can be requested via the eos GetTableInfo routine using the parameters

defined in this section. The eos GetTableInfo routine is designed to be general in functionality, so

these parameters are grouped according to their prerequisites.

It is important to note that the actual values of these constants may change without notice; there-

fore, use the constant names – do not hardwire the values into the host code.

Table E-1 lists parameters that require the comment tables (i.e., EOS Comment) for a material to

be loaded and associated with a table handle.

Table E-1: Information parameter(s) related to SESAME’s 100-series tables

Parameter Description

EOS Cmnt Len Retrieve the length in characters of the comments available

for the specified data table

Table E-2 lists parameters that require the general material data table (i.e., EOS Info) to be loaded

and associated with a table handle.

Table E-2: Information parameter(s) related to SESAME’s 201 tables

Parameter Description

EOS Exchange Coeff Retrieve the exchange coefficient

EOS Mean Atomic Mass Retrieve the mean atomic mass

EOS Mean Atomic Num Retrieve the mean atomic number

EOS Modulus Retrieve the solid bulk modulus

EOS Normal Density Retrieve the normal density

Table E-3 lists parameters that require data to be loaded and associated with a table handle;

however, they don’t apply to SESAME’s 100-series and 201 tables.

170 CHAPTER 14. APPENDIX

Table E-3: Information parameter(s) generally related to SESAME’s tables except

for SESAME’s 100-series and 201 tables

Parameter Description

EOS F Convert Factor Retrieve the conversion factor corresponding to the

dependent variable, F (x, y). This is an alias for

EOS F CONVERT.

EOS Log Val Retrieve the InfoVal that is non-zero if the data table is in

a log10 format.

EOS X Convert Factor Retrieve the conversion factor corresponding to the primary

independent variable, x. This is an alias for

EOS X CONVERT.

EOS Y Convert Factor Retrieve the conversion factor corresponding to the

secondary independent variable, y. This is an alias for

EOS Y CONVERT.

EOS NX Retrieve the extent of the xVals extrapolation lower/upper

bound(s) arrays. This value is dependent upon the table

type associated with the table handle, and it can be either

1 or NT. For example, for tables inverted with respect to

density this will be the number of temperatures (NT) – for

all others this will be 1.

EOS NY Retrieve the extent of the yVals extrapolation lower/upper

bound(s) arrays. This value is dependent upon the table

type associated with the table handle, and it can be either

1 or NR. For example, for tables inverted with respect to

temperature this will be the number of densities (NR) – for

all others this will be 1.

EOS X BOUND GRID Retrieve the extrapolation bound(s) grid array3 for the

xVals. If the value returned by EOS NX is 1, then this will

return an arbitrary scalar value of 0.

EOS X LOWER BOUND Retrieve the extrapolation lower bound(s) array3 for the

f(xmin, y), which corresponds to xVals in chapter 6.

Continued on next page

3The extent of this array is dependent upon the table type associated with the table handle, and it will correspond

to the value returned by EOS NX.

E. DATA INFORMATION PARAMETERS 171

Table E-3: Information parameter(s) generally related to SESAME’s tables except

for SESAME’s 100-series and 201 tables

Parameter Description

EOS X UPPER BOUND Retrieve the extrapolation upper bound(s) array3 for the

f(xmax, y), which corresponds to xVals in chapter 6.

EOS Y BOUND GRID Retrieve the extrapolation bound(s) grid array4 for the

yVals. If the value returned by EOS NY is 1, then this will

return an arbitrary scalar value of 0.

EOS Y LOWER BOUND Retrieve the extrapolation lower bound(s) array4 for the

f(x, ymin), which corresponds to yVals in chapter 6.

EOS Y UPPER BOUND Retrieve the extrapolation upper bound(s) array4 for the

f(x, ymax), which corresponds to yVals in chapter 6.

For an arbitrary tabulated surface, S=f(x,y), as

shown in the cartoon to the right, the various

boundaries, which are defined by the

EOS_X_LOWER_BOUND, EOS_X_UPPER_BOUND,

EOS_Y_LOWER_BOUND and EOS_Y_UPPER_BOUND

options, are shown as f(xmin, y), f(xmax, y),

f(x, ymin) and f(x, ymax) respectively. For

SESAME data that is not inverted, all four

boundary curves are scalar (i.e., minimum and

maximum densities and temperatures). For

inverted forms, one of the bounding pairs (either

f(x, ymin) and f(x, ymax) or f(xmin, y) and

f(xmax, y)) are scalars and the other are defined

as tabulated 1-D curves.

Table E-4 lists parameters that require data to be loaded and associated with a table handle. In

other words, all table handles that are associated with data may be queried for the information

indicated by these parameters.

4The extent of this array is dependent upon the table type associated with the table handle, and it will correspond

to the value returned by EOS NY.

172 CHAPTER 14. APPENDIX

Table E-4: Information parameter(s) generally related to SESAME’s tables

Parameter Description

EOS Material ID Retrieve the SESAME material identification number

EOS Table Type Retrieve the type of data table. Corresponds to the

parameters in APPENDICES B and C

Table E-5 lists parameters that require data to be loaded and associated with a table handle;

however, they are only valid for non-inverted data tables specifically related to SESAME’s 301 and

401 tables.

Table E-5: Information parameter(s) associated with non-inverted data tables

Parameter Description

EOS R Array Retrieve the density array

Note that InfoVals must be allocated to hold NR

EOS REAL values, so querying for the EOS NR value is

first necessary.

The conversion factor supplied via the EOS X CONVERT

option will affect these data.

EOS T Array Retrieve the temperature array

Note that InfoVals must be allocated to hold NT

EOS REAL values, so querying for the EOS NT value is

first necessary.

The conversion factor supplied via the EOS Y CONVERT

option will affect these data.

EOS F Array Retrieve the F array

This two-dimensional array will be assigned to the

one-dimensional array, InfoVals, in a column-major oder.

Note that InfoVals must be allocated to hold NR*NT

EOS REAL values, so querying for the EOS NR and

EOS NT values is first necessary.

The conversion factor supplied via the EOS F CONVERT

option will affect these data.

EOS NR Retrieve the number of densities

Continued on next page

E. DATA INFORMATION PARAMETERS 173

Table E-5: Information parameter(s) associated with non-inverted data tables

Parameter Description

EOS NT Retrieve the number of temperatures

EOS Rmin Retrieve the minimum density.

The conversion factor supplied via the EOS X CONVERT

option will affect these data.

EOS Rmax Retrieve the maximum density.

The conversion factor supplied via the EOS X CONVERT

option will affect these data.

EOS Tmin Retrieve the minimum temperature.

The conversion factor supplied via the EOS Y CONVERT

option will affect these data.

EOS Tmax Retrieve the maximum temperature.

The conversion factor supplied via the EOS Y CONVERT

option will affect these data.

EOS Fmin Retrieve the minimum F value.

The conversion factor supplied via the EOS F CONVERT

option will affect these data.

EOS Fmax Retrieve the maximum F value.

The conversion factor supplied via the EOS F CONVERT

option will affect these data.

EOS NUM PHASES Retrieve the number of material phases that are tabulated.

This is only valid in conjunction with the EOS M DT data

type.

174 CHAPTER 14. APPENDIX

F. META-DATA INFORMATION PARAMETERS 175

F META-DATA INFORMATION PARAMETERS

Information about a table can be requested via the eos GetMetaData and eos GetTableMetaData

routines using the parameters defined in this section. The eos GetMetaData and eos GetTableMetaData

routines are designed to be general in functionality, so these parameters are grouped according to

their usage.

It is important to note that the actual values of these constants may change without notice; there-

fore, use the constant names – do not hardwire the values into the host code.

Table F-1: Information parameter(s) used for the first argument (infoItem) of the

eos GetMetaData routine

Parameter Description

All table type constants defined in

APPENDICES B and C

Specify the table type of interest

Table F-2: Information parameter(s) used for the second argument (infoItemCat-

egory) of the eos GetMetaData routine

Parameter Description

EOS Table Type Retrieve the specified table type’s string

representation. Corresponds to the parameters in

APPENDICES B and C

EOS Table Name Retrieve the specified table type’s descriptive name.

Corresponds to the parameters’s descriptions in

APPENDICES B and C

EOS Dependent Var Retrieve the short string representation of the

specified table type’s dependent variable as listed in

APPENDIX A

EOS Independent Var1 Retrieve the short string representation of the

specified table type’s first independent variable as

listed in APPENDIX A

Continued on next page

176 CHAPTER 14. APPENDIX

Table F-2: Information parameter(s) used for the second argument (infoItemCat-

egory) of the eos GetMetaData routine

Parameter Description

EOS Independent Var2 Retrieve the short string representation of the

specified table type’s second independent variable as

listed in APPENDIX A

EOS Sesame Table List Retrieve the specified table type’s associated

SESAME table number(s)

EOS Pressure Balance Table Type Retrieve the specified table type’s associated pressure

balance table type as used by the eos Mix algorithms

[?]

EOS Temperature Balance Table Type Retrieve the specified table type’s associated

temperature balance table type as used by the

eos Mix algorithms [?]

Table F-3: Information parameter(s) used for the second argument (infoItem) of

the eos GetTableMetaData routine

Parameter Description

EOS File Name Retrieve the SESAME file name that is associated

with the specified table handle

EOS Material Name Retrieve the material name that is associated with

the specified table handle

EOS Material Source Retrieve the material source (e.g. author)5 that is

associated with the specified table handle

EOS Material Date Retrieve the material creation date12 that is

associated with the specified table handle

EOS Material Ref Retrieve the material documentation reference(s)12

that is associated with the specified table handle

EOS Material Composition Retrieve the material composition12 that is

associated with the specified table handle

EOS Material Codes Retrieve the data generation software name(s)12 that

is associated with the specified table handle

Continued on next page
5This information is found the SESAME 101 table, which is loaded using the EOS Comments table type

F. META-DATA INFORMATION PARAMETERS 177

Table F-3: Information parameter(s) used for the second argument (infoItem) of

the eos GetTableMetaData routine

Parameter Description

EOS Material Phases Retrieve the material phase name(s)12 that is

associated with the specified table handle

EOS Material Classification Retrieve the material classification description12 that

is associated with the specified table handle.

Examples include, but are not limited to, Unknown,

Unclassified, Export-Controlled, etc.

178 CHAPTER 14. APPENDIX

G. OPTIONS: INTERPOLATION PHASE 179

G OPTIONS: INTERPOLATION PHASE

Below is a list of defined constants corresponding to the user specified interpolation options available

within EOSPAC. This list has been alphabetized according to the defined constant names, which

are cross-referenced to the applicable EOSPAC 5[?],[?] defined constants. Unlike EOSPAC 5, these

EOSPAC option flags are to be applied to a given table handle using one of two public routines:

eos ResetOption and eos SetOption (see chapter 7 sections 1.7 and 1.11 respectively). For each

table handle, the eos SetOption routine may be used to enable or disable an optional feature.

Alternatively, the eos ResetOption routine may be used to reassert the default option settings if, in

fact, such default values are defined in the table below. Take note that some of the options require

an associated value passed into the eos SetOption routine parameter named tableOptionVal.

It is important to note that the actual values of these constants may change without notice; there-

fore, use the constant names – do not hardwire the values into the host code.

EOSPAC 6 Constant Default Option

State

(tableOptionVal)

Description

EOS DISCONTINUOUS DERIVATIVES Disabled

(N/A)

Enable the original

linear/bilinear logic, which

calculates discontinuous

derivatives at the tabulated

grid. This option requires the

interpolation option,

EOS LINEAR, to be enabled

for the specified table handle.

See section 8.6 for a brief

discussion of the rationale for

this option.

Continued on next page

180 CHAPTER 14. APPENDIX

EOSPAC 6 Constant Default Option

State

(tableOptionVal)

Description

EOS F CONVERT6 Disabled

(1.0)

Set the conversion factor used

on the fVals dependent variable

value(s). The value of the

eos SetOption parameter,

tableOptionVal, is to contain

the conversion factor value.7

EOS LINEAR Disabled

(N/A)

Bilinear interpolation.

The corresponding EOSPAC

5[?],[?] interpolation option

used to enable this feature is

idrvs=ES4 BILINE passed to

ES1VALS.

EOS RATIONAL Enabled

(N/A)

Birational interpolation.

The corresponding EOSPAC

5[?],[?] interpolation option

used to enable this feature is

idrvs=ES4 BIRATF passed to

ES1VALS.

EOS SKIP EXTRAP CHECK Disabled

(N/A)

All extrapolation checks are

skipped unless host calls

eos CheckExtrap.

Continued on next page

6The eos SetOption parameter, tableOptionVal (see chapter 7 section 1.11), must be defined to an appropriate

number for this option.
7The conversion factor value is defined so that it converts values from the SESAME units[?] to the host code

units; therefore, it is internally-used as a multiplier to convert the output values to the appropriate host code units.

G. OPTIONS: INTERPOLATION PHASE 181

EOSPAC 6 Constant Default Option

State

(tableOptionVal)

Description

EOS USE CUSTOM INTERP Disabled

(N/A)

Use a custom

inverse-interpolation algorithm

that requires the setup option,

EOS PT SMOOTHING, to be

enabled for the specified table

handle. This option is only

valid for table types

EOS Ut PtT and EOS V PtT.

See section 8.1 for more details.

Note that the partial

derivatives, dFx and dFy, are

not calculated when this option

is set.

EOS USE HOST XY Disabled

(N/A)

Do not create an internal copy

of the xVals and yVals inputs

for eos Interpolate, eos Mix

and eos CheckExtrap. Modify

the xVals and yVals inputs in

situ – use host code’s arrays

directly. Overrides

previously-set

EOS XY PASSTHRU option.

EOS X CONVERT6 Disabled

(1.0)

Set the conversion factor used

on the xVals independent

variable value(s). The value of

the eos SetOption parameter,

tableOptionVal, is to contain

the conversion factor value.8

Continued on next page

8The conversion factor value is defined so that it converts values from the host code units to the SESAME units[?];

therefore, it is internally-used as a divisor to convert the input values to the appropriate SESAME units.

182 CHAPTER 14. APPENDIX

EOSPAC 6 Constant Default Option

State

(tableOptionVal)

Description

EOS Y CONVERT6 Disabled

(1.0)

Set the conversion factor used

on the yVals independent

variable value(s). The value of

eos SetOption parameter,

tableOptionVal, is to contain

the conversion factor value.8

EOS XY MODIFY Disabled

(N/A)

Do not create an internal copy

of the xVals and yVals inputs

for eos Interpolate, eos Mix

and eos CheckExtrap. Modify

the xVals and yVals inputs in

situ – use host code’s arrays

directly. Overrides

previously-set

EOS XY PASSTHRU option.

EOS XY PASSTHRU Disabled

(N/A)

Neither create an internal copy

nor modify the xVals and yVals

inputs for eos Interpolate,

eos Mix and eos CheckExtrap.

Use host code’s arrays directly

– unmodified. Overrides

previously-set

EOS XY MODIFY option.

H. ERROR CODES 183

H ERROR CODES

Below is a list of defined constants corresponding to all of the possible error codes returned by

EOSPAC. This list has been alphabetized according to the defined constant names, which are

cross-referenced to the applicable EOSPAC 5[?],[?] defined constants.

It is important to note that the actual values of these constants may change without notice; there-

fore, use the constant names – do not hardwire the values into the host code.

NOTE: As of version 6.3, comparison of two error codes now requires the usage of the

eos ErrorCodesEqual routine described in chapter 7 section 1.1

EOSPAC 6 Constant

(EOSPAC 5 Constant)

Description

EOS BAD DATA TYPE

(ES5 BADTABLETYPE)

Data table type is not recognized

EOS BAD DERIVATIVE FLAG

(ES5 BADDERIVTYPE)

Derivative is not recognized

EOS BAD INTERPOLATION FLAG

(ES5 BADINTRPTYPE)

Interpolation is not recognized

EOS BAD MATERIAL ID

(ES5 MATIDZERO)

Material ID is zero

EOS CANT INVERT DATA Can’t invert with respect to the required

independent variable

EOS CANT MAKE MONOTONIC Can’t make data monotonic in X

EOS CONVERGENCE FAILED

(ES5 CONVERGEFAILED)

Iterative algorithm did not converge during

inverse interpolation

EOS DATA TYPE NOT FOUND

(ES5 TYPENOTFOUND)

Data table type is not in library

EOS DATA TYPE NO MATCH Data types do not match as required for mixing

EOS FAILED Operation failed

EOS GEN401 AND NOT FOUND 401 data was generated and not found

EOS INDEX FILE ERROR The sesameFilesDir.txt file parser found a syntax

error

EOS INTEGRATION FAILED Numerical integration failed or not possible

Continued on next page

184 CHAPTER 14. APPENDIX

EOSPAC 6 Constant

(EOSPAC 5 Constant)

Description

EOS INTERP EXTRAPOLATED Interpolation caused extrapolation beyond data

table boundaries

EOS INTERP EXTRAP PBAL Pressure balance function extrapolated beyond

data table boundaries

EOS INTERP EXTRAP TBAL Temperature balance function extrapolated

beyond data table boundaries

EOS INVALID CONC SUM The sum of the supplied material concentrations

does not equal 1.0

EOS INVALID DATA TYPE Operation is not defined on this data type

EOS INVALID INFO FLAG The info flag passed into either eos GetTableInfo

or eos GetTableMetaData is invalid

EOS INVALID INFO CATEGORY FLAG The info category flag passed into

eos GetMetaData is invalid

EOS INVALID NXYPAIRS Invalid nXYPairs value

EOS INVALID OPTION FLAG The option flag passed into eos SetOption is

invalid

EOS INVALID SPLIT FLAG The data splitting option is invalid

EOS INVALID SUBTABLE INDEX Subtable index out of the range

EOS INVALID TABLE HANDLE Invalid table handle

EOS MATERIAL NOT FOUND

(ES5 MATNOTFOUND)

Material ID is not in library

EOS MEM ALLOCATION FAILED

(ES5 EXPANDFAILED)

EOS table area cannot be expanded

EOS MIN ERROR CODE VALUE Minimum error code value

EOS NOT ALLOCATED Memory not allocated for data

EOS NOT INITIALIZED

(ES5 NOTINIT)

EOS table area is not initialized

EOS NO COMMENTS No comments available for this data table

EOS NO DATA TABLE

(ES5 NOTABLE)

Data table is not in EOS table area

EOS NO SESAME FILES

(ES5 NOFILESFOUND)

No data library files exist

Continued on next page

H. ERROR CODES 185

EOSPAC 6 Constant

(EOSPAC 5 Constant)

Description

EOS OK

(ES5 OK)

No errors detected

EOS OPEN OUTPUT FILE FAILED Could not open TablesLoaded.dat or related

data file

EOS OPEN SESAME FILE FAILED

(ES5 OPENFAILED)

Could not open data file

EOS READ DATA FAILED

(ES5 LDTABLEFAILED)

Could not load data table

EOS READ FILE VERSION FAILED

(ES5 GETVERSNFAILED)

Could not load version from data file

EOS READ MASTER DIR FAILED

(ES5 LDMASTERFAILED)

Could not load master directory

EOS READ MATERIAL DIR FAILED

(ES5 LDMATDIRFAILED)

Could not load material directory

EOS READ TOTAL MATERIALS FAILED

(ES5 GETNMATSFAILED)

Could not read number of materials

EOS SPLIT FAILED The data splitting algorithm failed

EOS UNDEFINED The result is undefined

EOS WARNING Operation has generated a warning and an

associated custom message

EOS xHi yHi Both the x and y arguments were high

EOS xHi yLo The x argument was high, the y argument was

low9

EOS xHi yOk The x argument was high, the y argument was

OK10

EOS xLo yHi The x argument was low, the y argument was

OK

EOS xLo yLo Both the x and y arguments were low9, 10

Continued on next page

9If the y argument corresponds to a temperature value, then a zero temperature was used for interpolation rather

than the value supplied by the host code.
10If the x argument corresponds to a density value, then a zero density was used for interpolation rather than the

value supplied by the host code.

186 CHAPTER 14. APPENDIX

EOSPAC 6 Constant

(EOSPAC 5 Constant)

Description

EOS xLo yOk The x argument was low, the y argument was

OK10

EOS xOk yHi The x argument is OK and the y argument is

high

EOS xOk yLo The x argument is OK and the y argument is

low9

	INTRODUCTION
	CONVENTIONS
	DATA ORGANIZATION
	ROUTINE NAMES
	CONSTANT IDENTIFIER NAMES
	DATA TYPES

	BASIC THEORY AND MODELS
	Nomenclature
	Entropy
	Ion EOS Models
	Ideal Gas Model
	Cowan Model
	Number Proportional Model

	Additional Thermodynamic Quantities
	Identities
	Sound speed
	Isentropic Compressibility
	Isothermal Compressibility
	Gruneisen Coefficient
	Specific heats
	Thermal expansion alpha

	GENERAL INTERFACE DESCRIPTION
	USE CASES
	Serial Case
	Parallel Case

	SETUP MATERIAL DATA
	DATA LOCATIONS
	Environment-variable-defined and default search paths
	Ordered File Names List Creation
	Index file
	Default file name list
	Ordered File Names List Example

	DATA ORGANIZATION
	ROUTINES AND PARAMETERS
	eos_CreateTables
	eos_DestroyAll
	eos_DestroyTables
	eos_GetMaxDataFileNameLength
	eos_GetPackedTables
	eos_GetPackedTablesSize
	eos_GpuOffloadData
	eos_LoadTables
	eos_SetDataFileName
	eos_SetPackedTables

	C/C++ LANGUAGE BINDINGS
	FORTRAN LANGUAGE BINDINGS

	INTERPOLATE MATERIAL DATA
	DATA ORGANIZATION
	ROUTINES AND PARAMETERS
	eos_CheckExtrap
	eos_Interpolate
	eos_Mix

	C/C++ LANGUAGE BINDINGS
	FORTRAN LANGUAGE BINDINGS

	MISCELLANEOUS INFORMATION ROUTINES
	ROUTINES AND PARAMETERS
	eos_ErrorCodesEqual
	eos_GetErrorCode
	eos_GetErrorMessage
	eos_GetTableCmnts
	eos_GetTableInfo
	eos_GetMetaData
	eos_GetTableMetaData
	eos_GetVersion
	eos_GetVersionLength
	eos_ResetOption
	eos_SetOption

	C/C++ LANGUAGE BINDINGS
	FORTRAN LANGUAGE BINDINGS

	TOOLS
	SELECTED NUMERIC DETAILS
	CUSTOM SMOOTHING AND INTERPOLATION
	FORCED DATA MONOTONICITY
	EXTENDED PRECISION IS DISABLED
	MASS FRACTION DATA INTERPOLATION
	NUMERICAL INTEGRATION
	LINEAR AND BILINEAR INTERPOLATION
	INVERT AT SETUP
	Data Transformations
	Usage of EOS_INSERT_DATA

	USAGE EXAMPLES
	C HOST CODE EXAMPLE
	C++ HOST CODE EXAMPLE
	FORTRAN 77 HOST CODE EXAMPLE
	FORTRAN 90 HOST CODE EXAMPLE

	TECHNICAL SUPPORT INFORMATION
	ACKNOWLEDGEMENTS
	BIBLIOGRAPHY
	APPENDIX
	TABLE TYPES: MNEMONIC CONVENTIONS
	TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME
	Category 1: Unrelated to SESAME data
	Category 2: General information found in SESAME's 100- and 200-series tables
	Category 3: Total EOS in SESAME's 301 tables
	Category 4: Ion+Cold EOS in SESAME's 303 tables
	Category 5: Electron EOS in SESAME's 304 tables
	Category 6: Ion EOS in SESAME's 305 tables
	Category 7: Cold curve EOS in SESAME's 306 tables
	Category 8: Mass fraction EOS in SESAME's 321 tables
	Category 9: Vaporization data in SESAME's 401 tables
	Category 10: Melt data in SESAME's 411 and 412 tables
	Category 11: Shear Modulus data in SESAME's 431 tables
	Category 12: Opacity data in SESAME's 500-series tables
	Category 13: Conductivity data in SESAME's 600-series tables

	TABLE TYPES: EOSPAC VERSION 5 CROSS REFERENCE
	OPTIONS: SETUP PHASE
	DATA INFORMATION PARAMETERS
	META-DATA INFORMATION PARAMETERS
	OPTIONS: INTERPOLATION PHASE
	ERROR CODES

